Machine learning for improved density functional theory thermodynamics
Abstract The predictive accuracy of density functional theory (DFT) for alloy formation enthalpies is often limited by intrinsic energy resolution errors, particularly in ternary phase stability calculations. In this work, we present a machine learning (ML) approach to systematically correct these e...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-05-01
|
| Series: | Scientific Reports |
| Online Access: | https://doi.org/10.1038/s41598-025-02088-7 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|