Optimization of the Regularization in Background and Foreground Modeling
Background and foreground modeling is a typical method in the application of computer vision. The current general “low-rank + sparse” model decomposes the frames from the video sequences into low-rank background and sparse foreground. But the sparse assumption in such a model may not conform with th...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2014-01-01
|
| Series: | Journal of Applied Mathematics |
| Online Access: | http://dx.doi.org/10.1155/2014/592834 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|