The TB27 Transcriptomic Model for Predicting Mycobacterium tuberculosis Culture Conversion

Rationale: Treatment monitoring of tuberculosis patients is complicated by a slow growth rate of Mycobacterium tuberculosis. Recently, host RNA signatures have been used to monitor the response to tuberculosis treatment. Objective: Identifying and validating a whole blood-based RNA signature mode...

Full description

Saved in:
Bibliographic Details
Main Authors: Maja Reimann, Korkut Avsar, Andrew DiNardo, Torsten Goldmann, Gunar Günther, Michael Hoelscher, Elmira Ibraim, Barbara Kalsdorf, Stefan Kaufmann, Niklas Köhler, Anna Mandalakas, Florian Maurer, Marius Müller, Dörte Nitschkowski, Ioana Olaru, Cristina Popa, Andrea Rachow, Thierry Rolling, Helmut Salzer, Patricia Sanchez-Carballo, Maren Schuhmann, Dagmar Schaub, Victor Spinu, Elena Terhalle, Markus Unnewehr, Nika Zielinski, Jan Heyckendorf, Christoph Lange
Format: Article
Language:English
Published: Case Western Reserve University 2025-01-01
Series:Pathogens and Immunity
Subjects:
Online Access:https://www.paijournal.com/index.php/paijournal/article/view/770
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832582434344927232
author Maja Reimann
Korkut Avsar
Andrew DiNardo
Torsten Goldmann
Gunar Günther
Michael Hoelscher
Elmira Ibraim
Barbara Kalsdorf
Stefan Kaufmann
Niklas Köhler
Anna Mandalakas
Florian Maurer
Marius Müller
Dörte Nitschkowski
Ioana Olaru
Cristina Popa
Andrea Rachow
Thierry Rolling
Helmut Salzer
Patricia Sanchez-Carballo
Maren Schuhmann
Dagmar Schaub
Victor Spinu
Elena Terhalle
Markus Unnewehr
Nika Zielinski
Jan Heyckendorf
Christoph Lange
author_facet Maja Reimann
Korkut Avsar
Andrew DiNardo
Torsten Goldmann
Gunar Günther
Michael Hoelscher
Elmira Ibraim
Barbara Kalsdorf
Stefan Kaufmann
Niklas Köhler
Anna Mandalakas
Florian Maurer
Marius Müller
Dörte Nitschkowski
Ioana Olaru
Cristina Popa
Andrea Rachow
Thierry Rolling
Helmut Salzer
Patricia Sanchez-Carballo
Maren Schuhmann
Dagmar Schaub
Victor Spinu
Elena Terhalle
Markus Unnewehr
Nika Zielinski
Jan Heyckendorf
Christoph Lange
author_sort Maja Reimann
collection DOAJ
description Rationale: Treatment monitoring of tuberculosis patients is complicated by a slow growth rate of Mycobacterium tuberculosis. Recently, host RNA signatures have been used to monitor the response to tuberculosis treatment. Objective: Identifying and validating a whole blood-based RNA signature model to predict microbiological treatment responses in patients on tuberculosis therapy. Methods: Using a multi-step machine learning algorithm to identify an RNA-based algorithm to predict the remaining time to culture conversion at flexible time points during anti-tuberculosis therapy.  Results: The identification cohort included 149 patients split into a training and a test cohort, to develop a multistep algorithm consisting of 27 genes (TB27) for predicting the remaining time to culture conversion (TCC) at any given time. In the test dataset, predicted TCC and observed TCC achieved a correlation coefficient of r=0.98. An external validation cohort of 34 patients shows a correlation between predicted and observed days to TCC also of r=0.98.  Conclusion: We identified and validated a whole blood-based RNA signature (TB27) that demonstrates an excellent agreement between predicted and observed times to M. tuberculosis culture conversion during tuberculosis therapy. TB27 is a potential useful biomarker for anti-tuberculosis drug development and for prediction of treatment responses in clinical practice. 
format Article
id doaj-art-3382df10301c4c1f84392118aa6c8d3b
institution Kabale University
issn 2469-2964
language English
publishDate 2025-01-01
publisher Case Western Reserve University
record_format Article
series Pathogens and Immunity
spelling doaj-art-3382df10301c4c1f84392118aa6c8d3b2025-01-29T20:32:42ZengCase Western Reserve UniversityPathogens and Immunity2469-29642025-01-0110110.20411/pai.v10i1.770The TB27 Transcriptomic Model for Predicting Mycobacterium tuberculosis Culture ConversionMaja Reimann0Korkut Avsar1Andrew DiNardo2Torsten Goldmann3Gunar Günther4Michael Hoelscher5Elmira Ibraim6Barbara Kalsdorf7Stefan Kaufmann8Niklas Köhler9Anna Mandalakas10Florian Maurer11Marius Müller12Dörte Nitschkowski13Ioana Olaru14Cristina Popa15Andrea Rachow16Thierry Rolling17Helmut Salzer18Patricia Sanchez-Carballo19Maren Schuhmann20Dagmar Schaub21Victor Spinu22Elena Terhalle23Markus Unnewehr24Nika Zielinski25Jan Heyckendorf26Christoph Lange27Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, GermanyAsklepios Fachkliniken München-Gauting, Munich, GermanyThe Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The NetherlandsDivision of Histopathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Lung Research (DZL), Airway Research Center North, Borstel, GermanyDepartment of Medicine, University of Namibia School of Medicine, Windhoek, Namibia; Inselspital Bern, Department of Pulmonology, Bern, SwitzerlandDivision of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Infection Research (DZIF), partner site Munich, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP; Immunology, Infection and Pandemic Research, Munich, Germany; Unit Global Health, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, GermanyInstitutul de Pneumoftiziologie “Marius Nasta”, MDR-TB Research Department, Bucharest, RomaniaClinical Infectious Diseases, Research Center Borstel, Borstel, Germany German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, GermanyMax Planck Institute for Infection Biology, Berlin, Germany; Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Hagler Institute for Advanced Study, Texas A&M University, College Station, TX; Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, GermanyClinical Infectious Diseases, Research Center Borstel, Borstel, Germany German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, GermanyClinical Infectious Diseases, Research Center Borstel, Borstel, Germany German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany; The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, TexasNational and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Borstel, Germany; Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; new affiliation: Roche Diagnostics, Zurich, SwitzerlandSankt Katharinen-Krankenhaus, Frankfurt, Germany; Infektiologikum, Frankfurt, GermanyDivision of Histopathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Lung Research (DZL), Airway Research Center North, Borstel, GermanyClinical Infectious Diseases, Research Center Borstel, Borstel, Germany; London School of Hygiene and Tropical Medicine, London, United Kingdom; new affiliation: Medical Microbiology, University of Münster, GermanyInstitutul de Pneumoftiziologie “Marius Nasta”, MDR-TB Research Department, Bucharest, RomaniaDivision of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Infection Research (DZIF), partner site Munich, GermanyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; new affiliation: Biontech SE, Mainz, GermanyClinical Infectious Diseases, Research Center Borstel, Borstel, Germany; Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine 4-Pneumology, Kepler University Hospital, Linz, Austria; Medical Faculty, Johannes Kepler University Linz, Linz, Austria; Ignaz-Semmelweis-Institute, Interuniversity Institute for Infection Research, Vienna, Austria Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, GermanyClinical Infectious Diseases, Research Center Borstel, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, GermanyClinical Infectious Diseases, Research Center Borstel, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, GermanyInstitutul de Pneumoftiziologie “Marius Nasta”, MDR-TB Research Department, Bucharest, RomaniaClinical Infectious Diseases, Research Center Borstel, Borstel, Germany; new affiliation: LungenClinic Großhansdorf, Großhansdorf, GermanyDepartment of Respiratory Medicine and Infectious Diseases, St. Barbara-Klinik, Hamm, Germany; Department of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, GermanyClinical Infectious Diseases, Research Center Borstel, Borstel, Germany; new affiliation: Internal Medicine II, Leibniz LungClinic, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Germany; new affiliation: Pulmonology and Inflammation Medicine, Christian-Albrechts-University Kiel, GermanyClinical Infectious Diseases, Research Center Borstel, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany Rationale: Treatment monitoring of tuberculosis patients is complicated by a slow growth rate of Mycobacterium tuberculosis. Recently, host RNA signatures have been used to monitor the response to tuberculosis treatment. Objective: Identifying and validating a whole blood-based RNA signature model to predict microbiological treatment responses in patients on tuberculosis therapy. Methods: Using a multi-step machine learning algorithm to identify an RNA-based algorithm to predict the remaining time to culture conversion at flexible time points during anti-tuberculosis therapy.  Results: The identification cohort included 149 patients split into a training and a test cohort, to develop a multistep algorithm consisting of 27 genes (TB27) for predicting the remaining time to culture conversion (TCC) at any given time. In the test dataset, predicted TCC and observed TCC achieved a correlation coefficient of r=0.98. An external validation cohort of 34 patients shows a correlation between predicted and observed days to TCC also of r=0.98.  Conclusion: We identified and validated a whole blood-based RNA signature (TB27) that demonstrates an excellent agreement between predicted and observed times to M. tuberculosis culture conversion during tuberculosis therapy. TB27 is a potential useful biomarker for anti-tuberculosis drug development and for prediction of treatment responses in clinical practice.  https://www.paijournal.com/index.php/paijournal/article/view/770biomarkertherapy responsetuberculosis treatmentprecision medicinesystems biology
spellingShingle Maja Reimann
Korkut Avsar
Andrew DiNardo
Torsten Goldmann
Gunar Günther
Michael Hoelscher
Elmira Ibraim
Barbara Kalsdorf
Stefan Kaufmann
Niklas Köhler
Anna Mandalakas
Florian Maurer
Marius Müller
Dörte Nitschkowski
Ioana Olaru
Cristina Popa
Andrea Rachow
Thierry Rolling
Helmut Salzer
Patricia Sanchez-Carballo
Maren Schuhmann
Dagmar Schaub
Victor Spinu
Elena Terhalle
Markus Unnewehr
Nika Zielinski
Jan Heyckendorf
Christoph Lange
The TB27 Transcriptomic Model for Predicting Mycobacterium tuberculosis Culture Conversion
Pathogens and Immunity
biomarker
therapy response
tuberculosis treatment
precision medicine
systems biology
title The TB27 Transcriptomic Model for Predicting Mycobacterium tuberculosis Culture Conversion
title_full The TB27 Transcriptomic Model for Predicting Mycobacterium tuberculosis Culture Conversion
title_fullStr The TB27 Transcriptomic Model for Predicting Mycobacterium tuberculosis Culture Conversion
title_full_unstemmed The TB27 Transcriptomic Model for Predicting Mycobacterium tuberculosis Culture Conversion
title_short The TB27 Transcriptomic Model for Predicting Mycobacterium tuberculosis Culture Conversion
title_sort tb27 transcriptomic model for predicting mycobacterium tuberculosis culture conversion
topic biomarker
therapy response
tuberculosis treatment
precision medicine
systems biology
url https://www.paijournal.com/index.php/paijournal/article/view/770
work_keys_str_mv AT majareimann thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT korkutavsar thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT andrewdinardo thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT torstengoldmann thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT gunargunther thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT michaelhoelscher thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT elmiraibraim thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT barbarakalsdorf thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT stefankaufmann thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT niklaskohler thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT annamandalakas thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT florianmaurer thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT mariusmuller thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT dortenitschkowski thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT ioanaolaru thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT cristinapopa thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT andrearachow thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT thierryrolling thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT helmutsalzer thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT patriciasanchezcarballo thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT marenschuhmann thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT dagmarschaub thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT victorspinu thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT elenaterhalle thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT markusunnewehr thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT nikazielinski thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT janheyckendorf thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT christophlange thetb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT majareimann tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT korkutavsar tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT andrewdinardo tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT torstengoldmann tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT gunargunther tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT michaelhoelscher tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT elmiraibraim tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT barbarakalsdorf tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT stefankaufmann tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT niklaskohler tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT annamandalakas tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT florianmaurer tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT mariusmuller tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT dortenitschkowski tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT ioanaolaru tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT cristinapopa tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT andrearachow tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT thierryrolling tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT helmutsalzer tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT patriciasanchezcarballo tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT marenschuhmann tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT dagmarschaub tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT victorspinu tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT elenaterhalle tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT markusunnewehr tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT nikazielinski tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT janheyckendorf tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion
AT christophlange tb27transcriptomicmodelforpredictingmycobacteriumtuberculosiscultureconversion