Microwave photonics promotes emerging integrated sensing and communication technology
Integrated sensing and communication (ISAC), a key technology for next-generation wireless networks (e.g., 5G-A and 6G), aims to provide both large-capacity wireless communication and high-resolution microwave sensing/ranging simultaneously. Microwave photonics (MWP)-ISAC, with its unique features s...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
AIP Publishing LLC
2025-03-01
|
| Series: | APL Photonics |
| Online Access: | http://dx.doi.org/10.1063/5.0225373 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Integrated sensing and communication (ISAC), a key technology for next-generation wireless networks (e.g., 5G-A and 6G), aims to provide both large-capacity wireless communication and high-resolution microwave sensing/ranging simultaneously. Microwave photonics (MWP)-ISAC, with its unique features such as high frequency, large bandwidth, low frequency-dependent loss, flat frequency response, fast analog signal processing, and strong immunity to electromagnetic interference, offers superior performance in terms of data rate and range/imaging resolution compared to traditional electronic technologies. This paper presents a comprehensive overview of the latest advancements in MWP-ISAC techniques, covering multi-domain resource multiplexing (MDRM) and integrated waveform (IW) strategies. We review four MDRM methods: time division multiplexing, frequency division multiplexing, space division multiplexing, and hybrid resource division multiplexing. In addition, we discuss sensing-centric IWs (including phase modulated continuous-wave and linear frequency modulation-based parameter modulation) and communication-centric IWs (such as orthogonal frequency division multiplexing and orthogonal chirp division multiplexing). |
|---|---|
| ISSN: | 2378-0967 |