Drainage Characteristics and Heat Transfer Performance of Fin Surfaces in Desert Greenhouse Environments

As desertification intensifies, greenhouses in arid regions are increasingly challenged by severe water scarcity and low water utilization efficiency. Traditional greenhouse HVAC systems are often inadequate in efficiently recovering condensate water. This study addressed these challenges by investi...

Full description

Saved in:
Bibliographic Details
Main Authors: Mingzhi Zhao, Feng Bai, Rong Yu, Yuru Liu, Yixuan Ma, Yingjie Liu, Bakhramzhan Rasakhodzhaev
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/8/2061
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As desertification intensifies, greenhouses in arid regions are increasingly challenged by severe water scarcity and low water utilization efficiency. Traditional greenhouse HVAC systems are often inadequate in efficiently recovering condensate water. This study addressed these challenges by investigating, through wind tunnel experiments, the fin angle and inlet wind speed for optimal condensation and heat transfer performance of a straight-fin heat exchanger in desert greenhouse environments. The experimental findings revealed that under low-temperature conditions, vertical fins facilitated gravity-driven droplet removal, resulting in a maximum condensate amount of 524.2 g within 120 min. Conversely, under high-temperature conditions, a fin angle of 45° optimally balanced turbulent disturbances and liquid film stability, producing a condensate amount of up to 887.1 g in the same timeframe. Additionally, wind speed tests at a 45° fin angle identified a critical wind speed of 1.5 m/s, beyond which the condensate amount significantly decreased. Furthermore, when the fin inclination reached or exceeded 60°, flow separation occurred, reducing the effective heat transfer area and negatively impacting the exchanger efficiency. Overall, the study provides significant insights into water conservation and sustainable environmental utilization by enhancing condensate recovery efficiency.
ISSN:1996-1073