Simplified Outcome Prediction in Patients Undergoing Transcatheter Tricuspid Valve Intervention by Survival Tree-Based Modelling

Background: Patients with severe tricuspid regurgitation (TR) typically present with heterogeneity in the extent of cardiac dysfunction and extra-cardiac comorbidities, which play a decisive role for survival after transcatheter tricuspid valve intervention (TTVI). Objectives: This aim of this study...

Full description

Saved in:
Bibliographic Details
Main Authors: Vera Fortmeier, MD, Mark Lachmann, MD, Lukas Stolz, MD, Jennifer von Stein, MD, Karl-Philipp Rommel, MD, Mohammad Kassar, MD, Muhammed Gerçek, MD, Anne R. Schöber, MD, Thomas J. Stocker, MD, Hazem Omran, MD, Michelle Fett, Jule Tervooren, Maria I. Körber, MD, Amelie Hesse, Gerhard Harmsen, PhD, Kai Peter Friedrichs, MD, Shinsuke Yuasa, MD, PhD, Tanja K. Rudolph, MD, Michael Joner, MD, Roman Pfister, MD, Stephan Baldus, MD, Karl-Ludwig Laugwitz, MD, Stephan Windecker, MD, Fabien Praz, MD, Philipp Lurz, MD, Jörg Hausleiter, MD, Volker Rudolph, MD
Format: Article
Language:English
Published: Elsevier 2025-02-01
Series:JACC: Advances
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2772963X24008561
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590871848026112
author Vera Fortmeier, MD
Mark Lachmann, MD
Lukas Stolz, MD
Jennifer von Stein, MD
Karl-Philipp Rommel, MD
Mohammad Kassar, MD
Muhammed Gerçek, MD
Anne R. Schöber, MD
Thomas J. Stocker, MD
Hazem Omran, MD
Michelle Fett
Jule Tervooren
Maria I. Körber, MD
Amelie Hesse
Gerhard Harmsen, PhD
Kai Peter Friedrichs, MD
Shinsuke Yuasa, MD, PhD
Tanja K. Rudolph, MD
Michael Joner, MD
Roman Pfister, MD
Stephan Baldus, MD
Karl-Ludwig Laugwitz, MD
Stephan Windecker, MD
Fabien Praz, MD
Philipp Lurz, MD
Jörg Hausleiter, MD
Volker Rudolph, MD
author_facet Vera Fortmeier, MD
Mark Lachmann, MD
Lukas Stolz, MD
Jennifer von Stein, MD
Karl-Philipp Rommel, MD
Mohammad Kassar, MD
Muhammed Gerçek, MD
Anne R. Schöber, MD
Thomas J. Stocker, MD
Hazem Omran, MD
Michelle Fett
Jule Tervooren
Maria I. Körber, MD
Amelie Hesse
Gerhard Harmsen, PhD
Kai Peter Friedrichs, MD
Shinsuke Yuasa, MD, PhD
Tanja K. Rudolph, MD
Michael Joner, MD
Roman Pfister, MD
Stephan Baldus, MD
Karl-Ludwig Laugwitz, MD
Stephan Windecker, MD
Fabien Praz, MD
Philipp Lurz, MD
Jörg Hausleiter, MD
Volker Rudolph, MD
author_sort Vera Fortmeier, MD
collection DOAJ
description Background: Patients with severe tricuspid regurgitation (TR) typically present with heterogeneity in the extent of cardiac dysfunction and extra-cardiac comorbidities, which play a decisive role for survival after transcatheter tricuspid valve intervention (TTVI). Objectives: This aim of this study was to create a survival tree-based model to determine the cardiac and extra-cardiac features associated with 2-year survival after TTVI. Methods: The study included 918 patients (derivation set, n = 631; validation set, n = 287) undergoing TTVI for severe TR. Supervised machine learning-derived survival tree-based modelling was applied to preprocedural clinical, laboratory, echocardiographic, and hemodynamic data. Results: Following univariate regression analysis to pre-select candidate variables for 2-year mortality prediction, a survival tree-based model was constructed using 4 key parameters. Three distinct cluster-related risk categories were identified, which differed significantly in survival after TTVI. Patients from the low-risk category (n = 261) were defined by mean pulmonary artery pressure ≤28 mm Hg and N-terminal pro–B-type natriuretic peptide ≤2,728 pg/mL, and they exhibited a 2-year survival rate of 85.5%. Patients from the high-risk category (n = 190) were defined by mean pulmonary artery pressure >28 mm Hg, right atrial area >32.5 cm2, and estimated glomerular filtration rate ≤51 mL/min, and they showed a significantly worse 2-year survival of only 52.6% (HR for 2-year mortality: 4.3, P < 0.001). Net re-classification improvement analysis demonstrated that this model was comparable to the TRI-Score and outperformed the EuroScore II in identifying high-risk patients. The prognostic value of risk phenotypes was confirmed by external validation. Conclusions: This simple survival tree-based model effectively stratifies patients with severe TR into distinct risk categories, demonstrating significant differences in 2-year survival after TTVI.
format Article
id doaj-art-2f1e5d3fc4694f26902a39bd1b1e9f98
institution Kabale University
issn 2772-963X
language English
publishDate 2025-02-01
publisher Elsevier
record_format Article
series JACC: Advances
spelling doaj-art-2f1e5d3fc4694f26902a39bd1b1e9f982025-01-23T05:28:04ZengElsevierJACC: Advances2772-963X2025-02-0142101575Simplified Outcome Prediction in Patients Undergoing Transcatheter Tricuspid Valve Intervention by Survival Tree-Based ModellingVera Fortmeier, MD0Mark Lachmann, MD1Lukas Stolz, MD2Jennifer von Stein, MD3Karl-Philipp Rommel, MD4Mohammad Kassar, MD5Muhammed Gerçek, MD6Anne R. Schöber, MD7Thomas J. Stocker, MD8Hazem Omran, MD9Michelle Fett10Jule Tervooren11Maria I. Körber, MD12Amelie Hesse13Gerhard Harmsen, PhD14Kai Peter Friedrichs, MD15Shinsuke Yuasa, MD, PhD16Tanja K. Rudolph, MD17Michael Joner, MD18Roman Pfister, MD19Stephan Baldus, MD20Karl-Ludwig Laugwitz, MD21Stephan Windecker, MD22Fabien Praz, MD23Philipp Lurz, MD24Jörg Hausleiter, MD25Volker Rudolph, MD26Department of General and Interventional Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum, Bad Oeynhausen, GermanyFirst Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, GermanyDZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany; Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, GermanyDepartment of Cardiology, Heart Center, University of Cologne, Cologne, GermanyDepartment of Cardiology, Heart Center Leipzig, University of Leipzig, Leipzig, GermanyDepartment of Cardiology, Inselspital Bern, Bern University Hospital, Bern, SwitzerlandDepartment of General and Interventional Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum, Bad Oeynhausen, GermanyDepartment of Cardiology, Heart Center Leipzig, University of Leipzig, Leipzig, GermanyDZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany; Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, GermanyDepartment of General and Interventional Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum, Bad Oeynhausen, GermanyDepartment of General and Interventional Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum, Bad Oeynhausen, GermanyDepartment of General and Interventional Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum, Bad Oeynhausen, Germany; First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, GermanyDepartment of Cardiology, Heart Center, University of Cologne, Cologne, GermanyFirst Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, GermanyDepartment of Physics, University of Johannesburg, Auckland Park, South AfricaDepartment of General and Interventional Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum, Bad Oeynhausen, GermanyDepartment of Cardiovascular Medicine, Okayama University, Okayama, JapanDepartment of General and Interventional Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum, Bad Oeynhausen, GermanyDZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany; Department of Cardiology, German Heart Center Munich, Technical University of Munich, Munich, GermanyDepartment of Cardiology, Heart Center, University of Cologne, Cologne, GermanyDepartment of Cardiology, Heart Center, University of Cologne, Cologne, GermanyFirst Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, GermanyDepartment of Cardiology, Inselspital Bern, Bern University Hospital, Bern, SwitzerlandDepartment of Cardiology, Inselspital Bern, Bern University Hospital, Bern, SwitzerlandDepartment of Cardiology, Heart Center Leipzig, University of Leipzig, Leipzig, GermanyDZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany; Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, GermanyDepartment of General and Interventional Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum, Bad Oeynhausen, Germany; Address for correspondence: Dr Volker Rudolph, Department of General and Interventional Cardiology, Heart and Diabetes Center North Rhine-Westfalia, Ruhr University Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany.Background: Patients with severe tricuspid regurgitation (TR) typically present with heterogeneity in the extent of cardiac dysfunction and extra-cardiac comorbidities, which play a decisive role for survival after transcatheter tricuspid valve intervention (TTVI). Objectives: This aim of this study was to create a survival tree-based model to determine the cardiac and extra-cardiac features associated with 2-year survival after TTVI. Methods: The study included 918 patients (derivation set, n = 631; validation set, n = 287) undergoing TTVI for severe TR. Supervised machine learning-derived survival tree-based modelling was applied to preprocedural clinical, laboratory, echocardiographic, and hemodynamic data. Results: Following univariate regression analysis to pre-select candidate variables for 2-year mortality prediction, a survival tree-based model was constructed using 4 key parameters. Three distinct cluster-related risk categories were identified, which differed significantly in survival after TTVI. Patients from the low-risk category (n = 261) were defined by mean pulmonary artery pressure ≤28 mm Hg and N-terminal pro–B-type natriuretic peptide ≤2,728 pg/mL, and they exhibited a 2-year survival rate of 85.5%. Patients from the high-risk category (n = 190) were defined by mean pulmonary artery pressure >28 mm Hg, right atrial area >32.5 cm2, and estimated glomerular filtration rate ≤51 mL/min, and they showed a significantly worse 2-year survival of only 52.6% (HR for 2-year mortality: 4.3, P < 0.001). Net re-classification improvement analysis demonstrated that this model was comparable to the TRI-Score and outperformed the EuroScore II in identifying high-risk patients. The prognostic value of risk phenotypes was confirmed by external validation. Conclusions: This simple survival tree-based model effectively stratifies patients with severe TR into distinct risk categories, demonstrating significant differences in 2-year survival after TTVI.http://www.sciencedirect.com/science/article/pii/S2772963X24008561machine learningtranscatheter tricuspid valve interventiontricuspid regurgitation
spellingShingle Vera Fortmeier, MD
Mark Lachmann, MD
Lukas Stolz, MD
Jennifer von Stein, MD
Karl-Philipp Rommel, MD
Mohammad Kassar, MD
Muhammed Gerçek, MD
Anne R. Schöber, MD
Thomas J. Stocker, MD
Hazem Omran, MD
Michelle Fett
Jule Tervooren
Maria I. Körber, MD
Amelie Hesse
Gerhard Harmsen, PhD
Kai Peter Friedrichs, MD
Shinsuke Yuasa, MD, PhD
Tanja K. Rudolph, MD
Michael Joner, MD
Roman Pfister, MD
Stephan Baldus, MD
Karl-Ludwig Laugwitz, MD
Stephan Windecker, MD
Fabien Praz, MD
Philipp Lurz, MD
Jörg Hausleiter, MD
Volker Rudolph, MD
Simplified Outcome Prediction in Patients Undergoing Transcatheter Tricuspid Valve Intervention by Survival Tree-Based Modelling
JACC: Advances
machine learning
transcatheter tricuspid valve intervention
tricuspid regurgitation
title Simplified Outcome Prediction in Patients Undergoing Transcatheter Tricuspid Valve Intervention by Survival Tree-Based Modelling
title_full Simplified Outcome Prediction in Patients Undergoing Transcatheter Tricuspid Valve Intervention by Survival Tree-Based Modelling
title_fullStr Simplified Outcome Prediction in Patients Undergoing Transcatheter Tricuspid Valve Intervention by Survival Tree-Based Modelling
title_full_unstemmed Simplified Outcome Prediction in Patients Undergoing Transcatheter Tricuspid Valve Intervention by Survival Tree-Based Modelling
title_short Simplified Outcome Prediction in Patients Undergoing Transcatheter Tricuspid Valve Intervention by Survival Tree-Based Modelling
title_sort simplified outcome prediction in patients undergoing transcatheter tricuspid valve intervention by survival tree based modelling
topic machine learning
transcatheter tricuspid valve intervention
tricuspid regurgitation
url http://www.sciencedirect.com/science/article/pii/S2772963X24008561
work_keys_str_mv AT verafortmeiermd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT marklachmannmd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT lukasstolzmd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT jennifervonsteinmd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT karlphilipprommelmd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT mohammadkassarmd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT muhammedgercekmd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT annerschobermd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT thomasjstockermd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT hazemomranmd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT michellefett simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT juletervooren simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT mariaikorbermd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT ameliehesse simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT gerhardharmsenphd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT kaipeterfriedrichsmd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT shinsukeyuasamdphd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT tanjakrudolphmd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT michaeljonermd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT romanpfistermd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT stephanbaldusmd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT karlludwiglaugwitzmd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT stephanwindeckermd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT fabienprazmd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT philipplurzmd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT jorghausleitermd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling
AT volkerrudolphmd simplifiedoutcomepredictioninpatientsundergoingtranscathetertricuspidvalveinterventionbysurvivaltreebasedmodelling