A Factor Graph Approach to Variational Sparse Gaussian Processes

A Variational Sparse Gaussian Process (VSGP) is a sophisticated nonparametric probabilistic model that has gained significant popularity since its inception. The VSGP model is often employed as a component of larger models or in a modified form across numerous applications. However, re-deriving the...

Full description

Saved in:
Bibliographic Details
Main Authors: Hoang Minh Huu Nguyen, Ismail Senoz, Bert De Vries
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Open Journal of Signal Processing
Subjects:
Online Access:https://ieeexplore.ieee.org/document/11063321/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A Variational Sparse Gaussian Process (VSGP) is a sophisticated nonparametric probabilistic model that has gained significant popularity since its inception. The VSGP model is often employed as a component of larger models or in a modified form across numerous applications. However, re-deriving the update equations for inference in these variations is technically challenging, which hinders broader adoption. In a separate line of research, message passing-based inference in factor graphs has emerged as an efficient framework for automated Bayesian inference. Despite its advantages, message passing techniques have not yet been applied to VSGP-based models due to the lack of a suitable representation for VSGP models in factor graphs. To address this limitation, we introduce a Sparse Gaussian Process (SGP) node within a Forney-style factor graph (FFG). We derive variational message passing update rules for the SGP node, enabling automated and efficient inference for VSGP-based models. We validate the update rules and illustrate the benefits of the SGP node through experiments in various Gaussian Process applications.
ISSN:2644-1322