Mitigating T-cell mitochondrial dysfunction in CLL to augment CAR T-cell therapy: evaluation in an immunocompetent model

Abstract: An unmet clinical need in chronic lymphocytic leukemia (CLL) is emerging due to the rapidly expanding group of patients with double refractory (Bruton's tyrosine kinase- and B-cell lymphoma 2-inhibitor) disease. So far, autologous T-cell–based therapies, including chimeric antigen rec...

Full description

Saved in:
Bibliographic Details
Main Authors: Wael Gamal, Nienke B. Goedhart, Helga Simon-Molas, Melanie Mediavilla-Varela, Angimar Uriepero-Palma, Fleur S. Peters, Kamira Maharaj, Julio C. Chavez, John Powers, Alyssa Obermayer, Timothy I. Shaw, José R. Conejo-Garcia, Paulo C. Rodriguez, Eva Sahakian, Javier Pinilla-Ibarz, Arnon P. Kater
Format: Article
Language:English
Published: Elsevier 2025-05-01
Series:Blood Advances
Online Access:http://www.sciencedirect.com/science/article/pii/S2473952925000990
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850128319326978048
author Wael Gamal
Nienke B. Goedhart
Helga Simon-Molas
Melanie Mediavilla-Varela
Angimar Uriepero-Palma
Fleur S. Peters
Kamira Maharaj
Julio C. Chavez
John Powers
Alyssa Obermayer
Timothy I. Shaw
José R. Conejo-Garcia
Paulo C. Rodriguez
Eva Sahakian
Javier Pinilla-Ibarz
Arnon P. Kater
author_facet Wael Gamal
Nienke B. Goedhart
Helga Simon-Molas
Melanie Mediavilla-Varela
Angimar Uriepero-Palma
Fleur S. Peters
Kamira Maharaj
Julio C. Chavez
John Powers
Alyssa Obermayer
Timothy I. Shaw
José R. Conejo-Garcia
Paulo C. Rodriguez
Eva Sahakian
Javier Pinilla-Ibarz
Arnon P. Kater
author_sort Wael Gamal
collection DOAJ
description Abstract: An unmet clinical need in chronic lymphocytic leukemia (CLL) is emerging due to the rapidly expanding group of patients with double refractory (Bruton's tyrosine kinase- and B-cell lymphoma 2-inhibitor) disease. So far, autologous T-cell–based therapies, including chimeric antigen receptor (CAR) T cells, have limited success in CLL, which has been attributed to an acquired CLL-mediated T-cell dysfunction and subset skewing toward effector cells at the expense of memory formation. T-cell responses rely on dynamic metabolic processes, particularly mitochondrial fitness. Although mitochondrial disruptions have been observed in solid tumor–infiltrating lymphocytes, their impact on T-cell immunity in lymphoproliferative disorders is unknown. Recent findings indicate that mitochondrial mass in CAR T cells correlates with CLL clinical outcomes. This prompted our investigation into the mitochondrial fitness in CLL T cells. Integrated metabolic and functional analyses revealed impaired, depolarized mitochondria across all T-cell subsets in untreated patients with CLL, leading to further ex vivo and in vivo mouse studies on the underlying signaling alterations. Multiomics profiling of transcriptome and epigenome revealed significant alterations in mitochondrial signaling, diminished adenosine monophosphate-activated protein kinase and autophagy activity, and upregulated glycolysis coupled with hyperactivation of Akt. Inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway during CLL T-cell culture induced metabolic reprogramming, enhancing mitochondrial activity, expression of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha, and memory differentiation. Underscoring clinical relevance, supplementation with the PI3Kδ inhibitor idelalisib during CAR T-cell manufacturing improved persistence and long-term leukemia-free remissions in an immunocompetent murine model. Our study suggests that modulating the abnormal CLL T-cell metabolism can enhance the efficacy of autologous T-cell therapies.
format Article
id doaj-art-2c768aa2f4d346d295914fa8a83f8c1e
institution OA Journals
issn 2473-9529
language English
publishDate 2025-05-01
publisher Elsevier
record_format Article
series Blood Advances
spelling doaj-art-2c768aa2f4d346d295914fa8a83f8c1e2025-08-20T02:33:20ZengElsevierBlood Advances2473-95292025-05-019102511252910.1182/bloodadvances.2024014822Mitigating T-cell mitochondrial dysfunction in CLL to augment CAR T-cell therapy: evaluation in an immunocompetent modelWael Gamal0Nienke B. Goedhart1Helga Simon-Molas2Melanie Mediavilla-Varela3Angimar Uriepero-Palma4Fleur S. Peters5Kamira Maharaj6Julio C. Chavez7John Powers8Alyssa Obermayer9Timothy I. Shaw10José R. Conejo-Garcia11Paulo C. Rodriguez12Eva Sahakian13Javier Pinilla-Ibarz14Arnon P. Kater15Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FLDepartments of Hematology and Experimental Immunology and Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, The NetherlandsDepartments of Hematology and Experimental Immunology and Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, The NetherlandsDepartment of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FLDepartment of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FLDepartments of Hematology and Experimental Immunology and Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, The NetherlandsDepartment of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FLDepartment of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FLDepartment of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FLDepartment of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FLDepartment of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FLDepartment of Integrative Immunobiology, Duke School of Medicine, Durham, NCDepartment of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FLDepartment of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; Eva Sahakian, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Dr, Tampa, FL 33612;Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; Correspondence: Javier Pinilla-Ibarz, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Dr, Tampa, FL 33612;Departments of Hematology and Experimental Immunology and Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, The NetherlandsAbstract: An unmet clinical need in chronic lymphocytic leukemia (CLL) is emerging due to the rapidly expanding group of patients with double refractory (Bruton's tyrosine kinase- and B-cell lymphoma 2-inhibitor) disease. So far, autologous T-cell–based therapies, including chimeric antigen receptor (CAR) T cells, have limited success in CLL, which has been attributed to an acquired CLL-mediated T-cell dysfunction and subset skewing toward effector cells at the expense of memory formation. T-cell responses rely on dynamic metabolic processes, particularly mitochondrial fitness. Although mitochondrial disruptions have been observed in solid tumor–infiltrating lymphocytes, their impact on T-cell immunity in lymphoproliferative disorders is unknown. Recent findings indicate that mitochondrial mass in CAR T cells correlates with CLL clinical outcomes. This prompted our investigation into the mitochondrial fitness in CLL T cells. Integrated metabolic and functional analyses revealed impaired, depolarized mitochondria across all T-cell subsets in untreated patients with CLL, leading to further ex vivo and in vivo mouse studies on the underlying signaling alterations. Multiomics profiling of transcriptome and epigenome revealed significant alterations in mitochondrial signaling, diminished adenosine monophosphate-activated protein kinase and autophagy activity, and upregulated glycolysis coupled with hyperactivation of Akt. Inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway during CLL T-cell culture induced metabolic reprogramming, enhancing mitochondrial activity, expression of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha, and memory differentiation. Underscoring clinical relevance, supplementation with the PI3Kδ inhibitor idelalisib during CAR T-cell manufacturing improved persistence and long-term leukemia-free remissions in an immunocompetent murine model. Our study suggests that modulating the abnormal CLL T-cell metabolism can enhance the efficacy of autologous T-cell therapies.http://www.sciencedirect.com/science/article/pii/S2473952925000990
spellingShingle Wael Gamal
Nienke B. Goedhart
Helga Simon-Molas
Melanie Mediavilla-Varela
Angimar Uriepero-Palma
Fleur S. Peters
Kamira Maharaj
Julio C. Chavez
John Powers
Alyssa Obermayer
Timothy I. Shaw
José R. Conejo-Garcia
Paulo C. Rodriguez
Eva Sahakian
Javier Pinilla-Ibarz
Arnon P. Kater
Mitigating T-cell mitochondrial dysfunction in CLL to augment CAR T-cell therapy: evaluation in an immunocompetent model
Blood Advances
title Mitigating T-cell mitochondrial dysfunction in CLL to augment CAR T-cell therapy: evaluation in an immunocompetent model
title_full Mitigating T-cell mitochondrial dysfunction in CLL to augment CAR T-cell therapy: evaluation in an immunocompetent model
title_fullStr Mitigating T-cell mitochondrial dysfunction in CLL to augment CAR T-cell therapy: evaluation in an immunocompetent model
title_full_unstemmed Mitigating T-cell mitochondrial dysfunction in CLL to augment CAR T-cell therapy: evaluation in an immunocompetent model
title_short Mitigating T-cell mitochondrial dysfunction in CLL to augment CAR T-cell therapy: evaluation in an immunocompetent model
title_sort mitigating t cell mitochondrial dysfunction in cll to augment car t cell therapy evaluation in an immunocompetent model
url http://www.sciencedirect.com/science/article/pii/S2473952925000990
work_keys_str_mv AT waelgamal mitigatingtcellmitochondrialdysfunctioninclltoaugmentcartcelltherapyevaluationinanimmunocompetentmodel
AT nienkebgoedhart mitigatingtcellmitochondrialdysfunctioninclltoaugmentcartcelltherapyevaluationinanimmunocompetentmodel
AT helgasimonmolas mitigatingtcellmitochondrialdysfunctioninclltoaugmentcartcelltherapyevaluationinanimmunocompetentmodel
AT melaniemediavillavarela mitigatingtcellmitochondrialdysfunctioninclltoaugmentcartcelltherapyevaluationinanimmunocompetentmodel
AT angimarurieperopalma mitigatingtcellmitochondrialdysfunctioninclltoaugmentcartcelltherapyevaluationinanimmunocompetentmodel
AT fleurspeters mitigatingtcellmitochondrialdysfunctioninclltoaugmentcartcelltherapyevaluationinanimmunocompetentmodel
AT kamiramaharaj mitigatingtcellmitochondrialdysfunctioninclltoaugmentcartcelltherapyevaluationinanimmunocompetentmodel
AT juliocchavez mitigatingtcellmitochondrialdysfunctioninclltoaugmentcartcelltherapyevaluationinanimmunocompetentmodel
AT johnpowers mitigatingtcellmitochondrialdysfunctioninclltoaugmentcartcelltherapyevaluationinanimmunocompetentmodel
AT alyssaobermayer mitigatingtcellmitochondrialdysfunctioninclltoaugmentcartcelltherapyevaluationinanimmunocompetentmodel
AT timothyishaw mitigatingtcellmitochondrialdysfunctioninclltoaugmentcartcelltherapyevaluationinanimmunocompetentmodel
AT joserconejogarcia mitigatingtcellmitochondrialdysfunctioninclltoaugmentcartcelltherapyevaluationinanimmunocompetentmodel
AT paulocrodriguez mitigatingtcellmitochondrialdysfunctioninclltoaugmentcartcelltherapyevaluationinanimmunocompetentmodel
AT evasahakian mitigatingtcellmitochondrialdysfunctioninclltoaugmentcartcelltherapyevaluationinanimmunocompetentmodel
AT javierpinillaibarz mitigatingtcellmitochondrialdysfunctioninclltoaugmentcartcelltherapyevaluationinanimmunocompetentmodel
AT arnonpkater mitigatingtcellmitochondrialdysfunctioninclltoaugmentcartcelltherapyevaluationinanimmunocompetentmodel