25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 exert distinct effects on human skeletal muscle function and gene expression.
Age-associated decline in muscle function represents a significant public health burden. Vitamin D-deficiency is also prevalent in aging subjects, and has been linked to loss of muscle mass and strength (sarcopenia), but the precise role of specific vitamin D metabolites in determining muscle phenot...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2017-01-01
|
| Series: | PLoS ONE |
| Online Access: | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0170665&type=printable |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|