3D convolutional deep learning for nonlinear estimation of body composition from whole body morphology
Abstract Body composition prediction from 3D optical imagery has previously been studied with linear algorithms. In this study, we present a novel application of deep 3D convolutional graph networks and nonlinear Gaussian process regression for human body shape parameterization and body composition...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-02-01
|
Series: | npj Digital Medicine |
Online Access: | https://doi.org/10.1038/s41746-025-01469-6 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|