State estimation with quantum extreme learning machines beyond the scrambling time

Abstract Quantum extreme learning machines (QELMs) leverage untrained quantum dynamics to efficiently process information encoded in input quantum states, avoiding the high computational cost of training more complicated nonlinear models. On the other hand, quantum information scrambling (QIS) quant...

Full description

Saved in:
Bibliographic Details
Main Authors: Marco Vetrano, Gabriele Lo Monaco, Luca Innocenti, Salvatore Lorenzo, G. Massimo Palma
Format: Article
Language:English
Published: Nature Portfolio 2025-02-01
Series:npj Quantum Information
Online Access:https://doi.org/10.1038/s41534-024-00927-5
Tags: Add Tag
No Tags, Be the first to tag this record!