Metabolic reprogramming in hepatocellular carcinoma: mechanisms of immune evasion and therapeutic implications

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, with limited treatment options for advanced stages. Metabolic reprogramming is a hallmark of cancer, enabling tumor cells to adapt to the harsh tumor microenvironment (TME) and evade immune surveillance. This revie...

Full description

Saved in:
Bibliographic Details
Main Authors: Bocheng Gao, Yan Lu, Xingyue Lai, Xi Xu, Shuhua Gou, Zhida Yang, Yanju Gong, Hong Yang
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-04-01
Series:Frontiers in Immunology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fimmu.2025.1592837/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, with limited treatment options for advanced stages. Metabolic reprogramming is a hallmark of cancer, enabling tumor cells to adapt to the harsh tumor microenvironment (TME) and evade immune surveillance. This review involves the role of metabolic reprogramming in HCC, focusing on the dysregulation of glucose, lipid, and amino acid metabolism, and its impact on immune evasion. Key metabolic pathways, such as the Warburg effect, fatty acid synthesis, and glutaminolysis, are discussed, along with their influence on tumor-associated macrophages (TAMs) and immune cell function. Targeting these metabolic alterations presents a promising therapeutic approach to enhance immunotherapy efficacy and improve HCC patient outcomes.
ISSN:1664-3224