Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals

Abstract Comorbid cardiovascular and metabolic risk factors (CVM) differentially impact brain structure and increase dementia risk, but their specific magnetic resonance imaging signatures (MRI) remain poorly characterized. To address this, we developed and validated machine learning models to quant...

Full description

Saved in:
Bibliographic Details
Main Authors: Sindhuja Tirumalai Govindarajan, Elizabeth Mamourian, Guray Erus, Ahmed Abdulkadir, Randa Melhem, Jimit Doshi, Raymond Pomponio, Duygu Tosun, Murat Bilgel, Yang An, Aristeidis Sotiras, Daniel S. Marcus, Pamela LaMontagne, Tammie L. S. Benzinger, Mark A. Espeland, Colin L. Masters, Paul Maruff, Lenore J. Launer, Jurgen Fripp, Sterling C. Johnson, John C. Morris, Marilyn S. Albert, R. Nick Bryan, Susan M. Resnick, Mohamad Habes, Haochang Shou, David A. Wolk, Ilya M. Nasrallah, Christos Davatzikos
Format: Article
Language:English
Published: Nature Portfolio 2025-03-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-57867-7
Tags: Add Tag
No Tags, Be the first to tag this record!