Charaterisation of function spaces via mollification; fractal quantities for distributions

The aim of this paper is twofold. First we characterise elements f belonging to the Besov spaces Bpqs(ℝn) with s∈ℝ,  0<p≤∞,  0<q≤∞, in terms of their mollifications. Secondly we use these results to study multifractal quantities for distributions generalising well-known corresponding quantitie...

Full description

Saved in:
Bibliographic Details
Main Author: Hans Triebel
Format: Article
Language:English
Published: Wiley 2003-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2003/951862
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832567156550664192
author Hans Triebel
author_facet Hans Triebel
author_sort Hans Triebel
collection DOAJ
description The aim of this paper is twofold. First we characterise elements f belonging to the Besov spaces Bpqs(ℝn) with s∈ℝ,  0<p≤∞,  0<q≤∞, in terms of their mollifications. Secondly we use these results to study multifractal quantities for distributions generalising well-known corresponding quantities for Radon measures.
format Article
id doaj-art-22b120090aca482890133670b7376704
institution Kabale University
issn 0972-6802
language English
publishDate 2003-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces and Applications
spelling doaj-art-22b120090aca482890133670b73767042025-02-03T01:02:07ZengWileyJournal of Function Spaces and Applications0972-68022003-01-0111758910.1155/2003/951862Charaterisation of function spaces via mollification; fractal quantities for distributionsHans Triebel0Mathematishes Institut, Fakultät für Mathematik und Informatik, Friedrih-Shiller-Universität, D-07740 Jena, GermanyThe aim of this paper is twofold. First we characterise elements f belonging to the Besov spaces Bpqs(ℝn) with s∈ℝ,  0<p≤∞,  0<q≤∞, in terms of their mollifications. Secondly we use these results to study multifractal quantities for distributions generalising well-known corresponding quantities for Radon measures.http://dx.doi.org/10.1155/2003/951862
spellingShingle Hans Triebel
Charaterisation of function spaces via mollification; fractal quantities for distributions
Journal of Function Spaces and Applications
title Charaterisation of function spaces via mollification; fractal quantities for distributions
title_full Charaterisation of function spaces via mollification; fractal quantities for distributions
title_fullStr Charaterisation of function spaces via mollification; fractal quantities for distributions
title_full_unstemmed Charaterisation of function spaces via mollification; fractal quantities for distributions
title_short Charaterisation of function spaces via mollification; fractal quantities for distributions
title_sort charaterisation of function spaces via mollification fractal quantities for distributions
url http://dx.doi.org/10.1155/2003/951862
work_keys_str_mv AT hanstriebel charaterisationoffunctionspacesviamollificationfractalquantitiesfordistributions