Charaterisation of function spaces via mollification; fractal quantities for distributions
The aim of this paper is twofold. First we characterise elements f belonging to the Besov spaces Bpqs(ℝn) with s∈ℝ, 0<p≤∞, 0<q≤∞, in terms of their mollifications. Secondly we use these results to study multifractal quantities for distributions generalising well-known corresponding quantitie...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2003-01-01
|
Series: | Journal of Function Spaces and Applications |
Online Access: | http://dx.doi.org/10.1155/2003/951862 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832567156550664192 |
---|---|
author | Hans Triebel |
author_facet | Hans Triebel |
author_sort | Hans Triebel |
collection | DOAJ |
description | The aim of this paper is twofold. First we characterise elements f belonging to the Besov spaces Bpqs(ℝn) with s∈ℝ, 0<p≤∞, 0<q≤∞, in terms of their mollifications. Secondly we use these results to study multifractal quantities for distributions generalising well-known corresponding quantities for Radon measures. |
format | Article |
id | doaj-art-22b120090aca482890133670b7376704 |
institution | Kabale University |
issn | 0972-6802 |
language | English |
publishDate | 2003-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Function Spaces and Applications |
spelling | doaj-art-22b120090aca482890133670b73767042025-02-03T01:02:07ZengWileyJournal of Function Spaces and Applications0972-68022003-01-0111758910.1155/2003/951862Charaterisation of function spaces via mollification; fractal quantities for distributionsHans Triebel0Mathematishes Institut, Fakultät für Mathematik und Informatik, Friedrih-Shiller-Universität, D-07740 Jena, GermanyThe aim of this paper is twofold. First we characterise elements f belonging to the Besov spaces Bpqs(ℝn) with s∈ℝ, 0<p≤∞, 0<q≤∞, in terms of their mollifications. Secondly we use these results to study multifractal quantities for distributions generalising well-known corresponding quantities for Radon measures.http://dx.doi.org/10.1155/2003/951862 |
spellingShingle | Hans Triebel Charaterisation of function spaces via mollification; fractal quantities for distributions Journal of Function Spaces and Applications |
title | Charaterisation of function spaces via mollification; fractal quantities for distributions |
title_full | Charaterisation of function spaces via mollification; fractal quantities for distributions |
title_fullStr | Charaterisation of function spaces via mollification; fractal quantities for distributions |
title_full_unstemmed | Charaterisation of function spaces via mollification; fractal quantities for distributions |
title_short | Charaterisation of function spaces via mollification; fractal quantities for distributions |
title_sort | charaterisation of function spaces via mollification fractal quantities for distributions |
url | http://dx.doi.org/10.1155/2003/951862 |
work_keys_str_mv | AT hanstriebel charaterisationoffunctionspacesviamollificationfractalquantitiesfordistributions |