Investigation of Structural Nonlinearity Effects on the Aeroelastic and Wake Characteristics of a 15 MW Wind Turbine

As wind turbines increase in size, blades become longer, thinner, and more flexible, making them more susceptible to large geometric nonlinear deformations, which pose challenges for aeroelastic simulations. This study presents a nonlinear aeroelastic model that accounts for large deformations of sl...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhenju Chuang, Lulin Xia, Yan Qu, Wenhua Li, Jiawen Li
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/13/1/116
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As wind turbines increase in size, blades become longer, thinner, and more flexible, making them more susceptible to large geometric nonlinear deformations, which pose challenges for aeroelastic simulations. This study presents a nonlinear aeroelastic model that accounts for large deformations of slender, flexible blades, coupled through the Actuator Line Method (ALM) and Geometrically Exact Beam Theory (GEBT). The accuracy of the model is validated by comparing it with established numerical methods, demonstrating its ability to capture the bending–torsional coupled nonlinear characteristics of highly flexible blades. A bidirectional fluid–structure coupling simulation of the IEA 15MW wind turbine under uniform flow conditions is conducted. The effect of blade nonlinear deformation on aeroelastic performance is compared with a linear model based on Euler–Bernoulli beam theory. The study finds that nonlinear deformations reduce predicted angle of attack, decrease aerodynamic load distribution, and lead to a noticeable decline in both wind turbine performance and blade deflection. The effects on thrust and edgewise deformation are particularly significant. Additionally, nonlinear deformations weaken the tip vortex strength, slow the momentum exchange in the wake region, reduce turbulence intensity, and delay wake recovery. This study highlights the importance of considering blade nonlinear deformations in large-scale wind turbines.
ISSN:2077-1312