Arbitrary random variables and Wiman's inequality for analytic functions in the unit disc
We consider the class $\mathcal{A}(\varphi,\beta)$ of random analytic functions in the unit disk $\mathbb{C}=\{z\colon |z|<1\}$ of the form $f(z,\omega)=f(z,\omega_1,\omega_2)=\sum_{n=0}^{+\infty} R_n(\omega_1)\xi_n(\omega_2)a_nz^n,$ where $a_n\in\mathbb{C}\colon \lim\limits_{n\to+\infty}\sq...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | deu |
| Published: |
Ivan Franko National University of Lviv
2024-09-01
|
| Series: | Математичні Студії |
| Subjects: | |
| Online Access: | http://matstud.org.ua/ojs/index.php/matstud/article/view/553 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|