Existence of solutions for a class of quasilinear Schrödinger equations with Choquard-type nonlinearity
For the following quasilinear Choquard-type equation: −Δu−Δ(u2)u+V(x)u=(Iμ*∣u∣p)∣u∣p−2u,x∈RN,-\Delta u-\Delta \left({u}^{2})u+V\left(x)u=\left({I}_{\mu }* {| u| }^{p}){| u| }^{p-2}u,\hspace{1em}x\in {{\mathbb{R}}}^{N}, where N≥3,0<μ<NN\ge 3,0\lt \mu \lt N, V(x)=a−b1+∣x∣2V\left(x)=a-\frac{b}{1+...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
De Gruyter
2024-11-01
|
| Series: | Advances in Nonlinear Analysis |
| Subjects: | |
| Online Access: | https://doi.org/10.1515/anona-2024-0008 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|