Improving the prediction of bitumen’s density and thermal expansion by optimizing artificial neural networks with Optuna and TensorFlow
Previous work demonstrated that Random Forest Regressors (RFRs) could estimate the physical properties of bitumen using molecular descriptors derived from Molecular Dynamics (MD) simulations, thereby reducing the need for computationally intensive simulations. However, due to their decision-tree str...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-12-01
|
| Series: | MethodsX |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2215016125003681 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|