Trajectory Stability in the Traveling Salesman Problem

Two generalizations of the traveling salesman problem in which sites change their position in time are presented. The way the rank of different trajectory lengths changes in time is studied using the rank diversity. We analyze the statistical properties of rank distributions and rank dynamics and gi...

Full description

Saved in:
Bibliographic Details
Main Authors: Sergio Sánchez, Germinal Cocho, Jorge Flores, Carlos Gershenson, Gerardo Iñiguez, Carlos Pineda
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2018/2826082
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832562148561125376
author Sergio Sánchez
Germinal Cocho
Jorge Flores
Carlos Gershenson
Gerardo Iñiguez
Carlos Pineda
author_facet Sergio Sánchez
Germinal Cocho
Jorge Flores
Carlos Gershenson
Gerardo Iñiguez
Carlos Pineda
author_sort Sergio Sánchez
collection DOAJ
description Two generalizations of the traveling salesman problem in which sites change their position in time are presented. The way the rank of different trajectory lengths changes in time is studied using the rank diversity. We analyze the statistical properties of rank distributions and rank dynamics and give evidence that the shortest and longest trajectories are more predictable and robust to change, that is, more stable.
format Article
id doaj-art-1c2e547407e1464ebdc82b5a1466a96f
institution Kabale University
issn 1076-2787
1099-0526
language English
publishDate 2018-01-01
publisher Wiley
record_format Article
series Complexity
spelling doaj-art-1c2e547407e1464ebdc82b5a1466a96f2025-02-03T01:23:18ZengWileyComplexity1076-27871099-05262018-01-01201810.1155/2018/28260822826082Trajectory Stability in the Traveling Salesman ProblemSergio Sánchez0Germinal Cocho1Jorge Flores2Carlos Gershenson3Gerardo Iñiguez4Carlos Pineda5Instituto de Física, Universidad Nacional Autónoma de México, 01000 CDMX, MexicoInstituto de Física, Universidad Nacional Autónoma de México, 01000 CDMX, MexicoInstituto de Física, Universidad Nacional Autónoma de México, 01000 CDMX, MexicoCentro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, 01000 CDMX, MexicoInstituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, 01000 CDMX, MexicoInstituto de Física, Universidad Nacional Autónoma de México, 01000 CDMX, MexicoTwo generalizations of the traveling salesman problem in which sites change their position in time are presented. The way the rank of different trajectory lengths changes in time is studied using the rank diversity. We analyze the statistical properties of rank distributions and rank dynamics and give evidence that the shortest and longest trajectories are more predictable and robust to change, that is, more stable.http://dx.doi.org/10.1155/2018/2826082
spellingShingle Sergio Sánchez
Germinal Cocho
Jorge Flores
Carlos Gershenson
Gerardo Iñiguez
Carlos Pineda
Trajectory Stability in the Traveling Salesman Problem
Complexity
title Trajectory Stability in the Traveling Salesman Problem
title_full Trajectory Stability in the Traveling Salesman Problem
title_fullStr Trajectory Stability in the Traveling Salesman Problem
title_full_unstemmed Trajectory Stability in the Traveling Salesman Problem
title_short Trajectory Stability in the Traveling Salesman Problem
title_sort trajectory stability in the traveling salesman problem
url http://dx.doi.org/10.1155/2018/2826082
work_keys_str_mv AT sergiosanchez trajectorystabilityinthetravelingsalesmanproblem
AT germinalcocho trajectorystabilityinthetravelingsalesmanproblem
AT jorgeflores trajectorystabilityinthetravelingsalesmanproblem
AT carlosgershenson trajectorystabilityinthetravelingsalesmanproblem
AT gerardoiniguez trajectorystabilityinthetravelingsalesmanproblem
AT carlospineda trajectorystabilityinthetravelingsalesmanproblem