Trajectory Stability in the Traveling Salesman Problem
Two generalizations of the traveling salesman problem in which sites change their position in time are presented. The way the rank of different trajectory lengths changes in time is studied using the rank diversity. We analyze the statistical properties of rank distributions and rank dynamics and gi...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2018-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2018/2826082 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832562148561125376 |
---|---|
author | Sergio Sánchez Germinal Cocho Jorge Flores Carlos Gershenson Gerardo Iñiguez Carlos Pineda |
author_facet | Sergio Sánchez Germinal Cocho Jorge Flores Carlos Gershenson Gerardo Iñiguez Carlos Pineda |
author_sort | Sergio Sánchez |
collection | DOAJ |
description | Two generalizations of the traveling salesman problem in which sites change their position in time are presented. The way the rank of different trajectory lengths changes in time is studied using the rank diversity. We analyze the statistical properties of rank distributions and rank dynamics and give evidence that the shortest and longest trajectories are more predictable and robust to change, that is, more stable. |
format | Article |
id | doaj-art-1c2e547407e1464ebdc82b5a1466a96f |
institution | Kabale University |
issn | 1076-2787 1099-0526 |
language | English |
publishDate | 2018-01-01 |
publisher | Wiley |
record_format | Article |
series | Complexity |
spelling | doaj-art-1c2e547407e1464ebdc82b5a1466a96f2025-02-03T01:23:18ZengWileyComplexity1076-27871099-05262018-01-01201810.1155/2018/28260822826082Trajectory Stability in the Traveling Salesman ProblemSergio Sánchez0Germinal Cocho1Jorge Flores2Carlos Gershenson3Gerardo Iñiguez4Carlos Pineda5Instituto de Física, Universidad Nacional Autónoma de México, 01000 CDMX, MexicoInstituto de Física, Universidad Nacional Autónoma de México, 01000 CDMX, MexicoInstituto de Física, Universidad Nacional Autónoma de México, 01000 CDMX, MexicoCentro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, 01000 CDMX, MexicoInstituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, 01000 CDMX, MexicoInstituto de Física, Universidad Nacional Autónoma de México, 01000 CDMX, MexicoTwo generalizations of the traveling salesman problem in which sites change their position in time are presented. The way the rank of different trajectory lengths changes in time is studied using the rank diversity. We analyze the statistical properties of rank distributions and rank dynamics and give evidence that the shortest and longest trajectories are more predictable and robust to change, that is, more stable.http://dx.doi.org/10.1155/2018/2826082 |
spellingShingle | Sergio Sánchez Germinal Cocho Jorge Flores Carlos Gershenson Gerardo Iñiguez Carlos Pineda Trajectory Stability in the Traveling Salesman Problem Complexity |
title | Trajectory Stability in the Traveling Salesman Problem |
title_full | Trajectory Stability in the Traveling Salesman Problem |
title_fullStr | Trajectory Stability in the Traveling Salesman Problem |
title_full_unstemmed | Trajectory Stability in the Traveling Salesman Problem |
title_short | Trajectory Stability in the Traveling Salesman Problem |
title_sort | trajectory stability in the traveling salesman problem |
url | http://dx.doi.org/10.1155/2018/2826082 |
work_keys_str_mv | AT sergiosanchez trajectorystabilityinthetravelingsalesmanproblem AT germinalcocho trajectorystabilityinthetravelingsalesmanproblem AT jorgeflores trajectorystabilityinthetravelingsalesmanproblem AT carlosgershenson trajectorystabilityinthetravelingsalesmanproblem AT gerardoiniguez trajectorystabilityinthetravelingsalesmanproblem AT carlospineda trajectorystabilityinthetravelingsalesmanproblem |