Soluble αβ-tubulins reversibly sequester TTC5 to regulate tubulin mRNA decay

Abstract Microtubules, built from heterodimers of α- and β-tubulins, control cell shape, mediate intracellular transport, and power cell division. The concentration of αβ-tubulins is tightly controlled through a posttranscriptional mechanism involving selective and regulated degradation of tubulin-e...

Full description

Saved in:
Bibliographic Details
Main Authors: Alina Batiuk, Markus Höpfler, Ana C. Almeida, Deryn Teoh En-Jie, Oscar Vadas, Evangelia Vartholomaiou, Ramanujan S. Hegde, Zhewang Lin, Ivana Gasic
Format: Article
Language:English
Published: Nature Portfolio 2024-11-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-54036-0
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Microtubules, built from heterodimers of α- and β-tubulins, control cell shape, mediate intracellular transport, and power cell division. The concentration of αβ-tubulins is tightly controlled through a posttranscriptional mechanism involving selective and regulated degradation of tubulin-encoding mRNAs. Degradation is initiated by TTC5, which recognizes tubulin-synthesizing ribosomes and recruits downstream effectors to trigger mRNA deadenylation. Here, we investigate how cells regulate TTC5 activity. Biochemical and structural proteomic approaches reveal that under normal conditions, soluble αβ-tubulins bind to and sequester TTC5, preventing it from engaging nascent tubulins at translating ribosomes. We identify the flexible C-terminal tail of TTC5 as a molecular switch, toggling between soluble αβ-tubulin-bound and nascent tubulin-bound states. Loss of sequestration by soluble αβ-tubulins constitutively activates TTC5, leading to diminished tubulin mRNA levels and compromised microtubule-dependent chromosome segregation during cell division. Our findings provide a paradigm for how cells regulate the activity of a specificity factor to adapt posttranscriptional regulation of gene expression to cellular needs.
ISSN:2041-1723