Compressive Behavior, Mechanical Properties and Energy Absorption of Al Honeycomb and Al Closed-Cell Foam: A Comparison

In this work, we focused on the characterization of closed-cell Al foams and aluminum honeycomb panels, in particular their energy absorption capacity under conditions of static compressive stress. Through experimental tests, the specific energy absorbed by different samples was evaluated: in the ho...

Full description

Saved in:
Bibliographic Details
Main Authors: Alessandra Ceci, Girolamo Costanza, Maria Elisa Tata
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Aerospace
Subjects:
Online Access:https://www.mdpi.com/2226-4310/12/1/32
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we focused on the characterization of closed-cell Al foams and aluminum honeycomb panels, in particular their energy absorption capacity under conditions of static compressive stress. Through experimental tests, the specific energy absorbed by different samples was evaluated: in the honeycomb panels the mechanical behavior was analyzed both for large assemblies and for structures with a reduced number of cells, and the effect of the number of cells was studied too. Furthermore, for larger structures, the specific energy absorbed was calculated from stress–strain compressive graphs. For the closed-cell Al foams, manufactured in the laboratory using the powder compaction method with different percentages of SiC and TiH<sub>2</sub> and characterized by different relative densities, the specific energy absorbed was evaluated too. The experimental results showed that the specific energy absorbed by the Al honeycomb was always higher than that of the different types of closed-cell foams. However, when selecting the material for each specific application, it is necessary to take into account numerous parameters such as the relative density, absorbed energy, peak stress, plateau stress, plateau extension, densification strain and so on. Consequently, the overall performance must be evaluated from time to time based on the type of application in which the best compromise between strength, stiffness and lightness can be achieved.
ISSN:2226-4310