Remarks on derivations on semiprime rings

We prove that a semiprime ring R must be commutative if it admits a derivation d such that (i) xy+d(xy)=yx+d(yx) for all x, y in R, or (ii) xy−d(xy)=yx−d(yx) for all x, y in R. In the event that R is prime, (i) or (ii) need only be assumed for all x, y in some nonzero ideal of R.

Saved in:
Bibliographic Details
Main Authors: Mohamad Nagy Daif, Howard E. Bell
Format: Article
Language:English
Published: Wiley 1992-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171292000255
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832558294541008896
author Mohamad Nagy Daif
Howard E. Bell
author_facet Mohamad Nagy Daif
Howard E. Bell
author_sort Mohamad Nagy Daif
collection DOAJ
description We prove that a semiprime ring R must be commutative if it admits a derivation d such that (i) xy+d(xy)=yx+d(yx) for all x, y in R, or (ii) xy−d(xy)=yx−d(yx) for all x, y in R. In the event that R is prime, (i) or (ii) need only be assumed for all x, y in some nonzero ideal of R.
format Article
id doaj-art-1729dce66c4940ee9152f5aefc5bdda7
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1992-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-1729dce66c4940ee9152f5aefc5bdda72025-02-03T01:32:38ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251992-01-0115120520610.1155/S0161171292000255Remarks on derivations on semiprime ringsMohamad Nagy Daif0Howard E. Bell1Department of Mathematics, Faculty of Education, Umm Al-Qura University, Taif, Saudi ArabiaDepartment of Mathematics, Brock University, Ontario, St. Catharines, CanadaWe prove that a semiprime ring R must be commutative if it admits a derivation d such that (i) xy+d(xy)=yx+d(yx) for all x, y in R, or (ii) xy−d(xy)=yx−d(yx) for all x, y in R. In the event that R is prime, (i) or (ii) need only be assumed for all x, y in some nonzero ideal of R.http://dx.doi.org/10.1155/S0161171292000255derivationsemiprime ringprime ringcommutativecentral idealintegral domaindirect sum.
spellingShingle Mohamad Nagy Daif
Howard E. Bell
Remarks on derivations on semiprime rings
International Journal of Mathematics and Mathematical Sciences
derivation
semiprime ring
prime ring
commutative
central ideal
integral domain
direct sum.
title Remarks on derivations on semiprime rings
title_full Remarks on derivations on semiprime rings
title_fullStr Remarks on derivations on semiprime rings
title_full_unstemmed Remarks on derivations on semiprime rings
title_short Remarks on derivations on semiprime rings
title_sort remarks on derivations on semiprime rings
topic derivation
semiprime ring
prime ring
commutative
central ideal
integral domain
direct sum.
url http://dx.doi.org/10.1155/S0161171292000255
work_keys_str_mv AT mohamadnagydaif remarksonderivationsonsemiprimerings
AT howardebell remarksonderivationsonsemiprimerings