Identifying the Geographical Origin of Tobacco Leaf by Strontium and Lead Isotopic with Mineral Elemental Fingerprint
The primary aim of this paper was to identifying the geographical origin of tobacco leaves based on stable isotopic and mineral elemental fingerprint. We collected eighty-one tobacco leaf samples from Argentina, Brazil, Zimbabwe, the U.S., Zambia, and China. And nine mineral element contents and fou...
Saved in:
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-01-01
|
Series: | International Journal of Chemical Engineering |
Online Access: | http://dx.doi.org/10.1155/2022/5949770 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832558368151044096 |
---|---|
author | Liu Hong Wenyuan Wang Yang Su Guiping Zhang Yong Su Chenming Zhang Jianhua Chen Wei Zhe Zhihua Liu Jianyong Cui Deshou Mao Jin Wang |
author_facet | Liu Hong Wenyuan Wang Yang Su Guiping Zhang Yong Su Chenming Zhang Jianhua Chen Wei Zhe Zhihua Liu Jianyong Cui Deshou Mao Jin Wang |
author_sort | Liu Hong |
collection | DOAJ |
description | The primary aim of this paper was to identifying the geographical origin of tobacco leaves based on stable isotopic and mineral elemental fingerprint. We collected eighty-one tobacco leaf samples from Argentina, Brazil, Zimbabwe, the U.S., Zambia, and China. And nine mineral element contents and four strontium and lead isotope ratios of the tobacco leaves were determined by thermal ionization mass spectrometry (TIMS) and inductively coupled plasma mass spectrometry (ICP-MS). After variance and stepwise discriminant analysis, the discriminant functions of the tobacco leaf’s geographical origin were established. The results indicate that: (1) the contents of six mineral elements including Cu, Zn, Cr, Ni, Cd, and Pb, together with four strontium and lead isotope ratios containing 87Sr/86Sr, 208Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb, were significantly different among six countries. (2) Different countries presented some characteristic mineral elemental and isotopic fingerprint. The even contents of mineral elements from Zambian tobacco leaf were much lower than the other countries, among which four elements consisting of Zn, Cr, As, and Cd were not detected. The three average lead isotope ratios including 208Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb from Zimbabwe tobacco leaves were far higher than the other countries, and the range of which was unoverlapped. (3) The effective identification of the geographical origin of tobacco leaf was accomplished by Fisher stepwise discriminant analysis and the characteristic tracing elements consisted of Cu, Zn, Cr, Ni, Cd, Pb, 87Sr/86Sr, 207Pb/204Pb, and 206Pb/204Pb. Based on the established discriminant functions, the original and cross-validation accuracy towards different geographical origins of tobacco leaves were 98.8% and 95.1%, respectively. The study shows that the strontium and lead isotopic with mineral elemental fingerprints is a potential effective method to identify the geographical origin of tobacco leaves from different countries. |
format | Article |
id | doaj-art-1493f744f3244f23865880231a745d24 |
institution | Kabale University |
issn | 1687-8078 |
language | English |
publishDate | 2022-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Chemical Engineering |
spelling | doaj-art-1493f744f3244f23865880231a745d242025-02-03T01:32:30ZengWileyInternational Journal of Chemical Engineering1687-80782022-01-01202210.1155/2022/5949770Identifying the Geographical Origin of Tobacco Leaf by Strontium and Lead Isotopic with Mineral Elemental FingerprintLiu Hong0Wenyuan Wang1Yang Su2Guiping Zhang3Yong Su4Chenming Zhang5Jianhua Chen6Wei Zhe7Zhihua Liu8Jianyong Cui9Deshou Mao10Jin Wang11R & D CenterR & D CenterR & D CenterR & D CenterR & D CenterR & D CenterR & D CenterR & D CenterR & D CenterBeijing Research Institute of Uranium GeologyR & D CenterR & D CenterThe primary aim of this paper was to identifying the geographical origin of tobacco leaves based on stable isotopic and mineral elemental fingerprint. We collected eighty-one tobacco leaf samples from Argentina, Brazil, Zimbabwe, the U.S., Zambia, and China. And nine mineral element contents and four strontium and lead isotope ratios of the tobacco leaves were determined by thermal ionization mass spectrometry (TIMS) and inductively coupled plasma mass spectrometry (ICP-MS). After variance and stepwise discriminant analysis, the discriminant functions of the tobacco leaf’s geographical origin were established. The results indicate that: (1) the contents of six mineral elements including Cu, Zn, Cr, Ni, Cd, and Pb, together with four strontium and lead isotope ratios containing 87Sr/86Sr, 208Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb, were significantly different among six countries. (2) Different countries presented some characteristic mineral elemental and isotopic fingerprint. The even contents of mineral elements from Zambian tobacco leaf were much lower than the other countries, among which four elements consisting of Zn, Cr, As, and Cd were not detected. The three average lead isotope ratios including 208Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb from Zimbabwe tobacco leaves were far higher than the other countries, and the range of which was unoverlapped. (3) The effective identification of the geographical origin of tobacco leaf was accomplished by Fisher stepwise discriminant analysis and the characteristic tracing elements consisted of Cu, Zn, Cr, Ni, Cd, Pb, 87Sr/86Sr, 207Pb/204Pb, and 206Pb/204Pb. Based on the established discriminant functions, the original and cross-validation accuracy towards different geographical origins of tobacco leaves were 98.8% and 95.1%, respectively. The study shows that the strontium and lead isotopic with mineral elemental fingerprints is a potential effective method to identify the geographical origin of tobacco leaves from different countries.http://dx.doi.org/10.1155/2022/5949770 |
spellingShingle | Liu Hong Wenyuan Wang Yang Su Guiping Zhang Yong Su Chenming Zhang Jianhua Chen Wei Zhe Zhihua Liu Jianyong Cui Deshou Mao Jin Wang Identifying the Geographical Origin of Tobacco Leaf by Strontium and Lead Isotopic with Mineral Elemental Fingerprint International Journal of Chemical Engineering |
title | Identifying the Geographical Origin of Tobacco Leaf by Strontium and Lead Isotopic with Mineral Elemental Fingerprint |
title_full | Identifying the Geographical Origin of Tobacco Leaf by Strontium and Lead Isotopic with Mineral Elemental Fingerprint |
title_fullStr | Identifying the Geographical Origin of Tobacco Leaf by Strontium and Lead Isotopic with Mineral Elemental Fingerprint |
title_full_unstemmed | Identifying the Geographical Origin of Tobacco Leaf by Strontium and Lead Isotopic with Mineral Elemental Fingerprint |
title_short | Identifying the Geographical Origin of Tobacco Leaf by Strontium and Lead Isotopic with Mineral Elemental Fingerprint |
title_sort | identifying the geographical origin of tobacco leaf by strontium and lead isotopic with mineral elemental fingerprint |
url | http://dx.doi.org/10.1155/2022/5949770 |
work_keys_str_mv | AT liuhong identifyingthegeographicaloriginoftobaccoleafbystrontiumandleadisotopicwithmineralelementalfingerprint AT wenyuanwang identifyingthegeographicaloriginoftobaccoleafbystrontiumandleadisotopicwithmineralelementalfingerprint AT yangsu identifyingthegeographicaloriginoftobaccoleafbystrontiumandleadisotopicwithmineralelementalfingerprint AT guipingzhang identifyingthegeographicaloriginoftobaccoleafbystrontiumandleadisotopicwithmineralelementalfingerprint AT yongsu identifyingthegeographicaloriginoftobaccoleafbystrontiumandleadisotopicwithmineralelementalfingerprint AT chenmingzhang identifyingthegeographicaloriginoftobaccoleafbystrontiumandleadisotopicwithmineralelementalfingerprint AT jianhuachen identifyingthegeographicaloriginoftobaccoleafbystrontiumandleadisotopicwithmineralelementalfingerprint AT weizhe identifyingthegeographicaloriginoftobaccoleafbystrontiumandleadisotopicwithmineralelementalfingerprint AT zhihualiu identifyingthegeographicaloriginoftobaccoleafbystrontiumandleadisotopicwithmineralelementalfingerprint AT jianyongcui identifyingthegeographicaloriginoftobaccoleafbystrontiumandleadisotopicwithmineralelementalfingerprint AT deshoumao identifyingthegeographicaloriginoftobaccoleafbystrontiumandleadisotopicwithmineralelementalfingerprint AT jinwang identifyingthegeographicaloriginoftobaccoleafbystrontiumandleadisotopicwithmineralelementalfingerprint |