ELM‐Wet: Inclusion of a Wet‐Landunit With Sub‐Grid Representation of Eco‐Hydrological Patches and Hydrological Forcing Improves Methane Emission Estimations in the E3SM Land Model (ELM)

Abstract Wetlands are the largest emitters of biogenic methane (CH4) and represent the highest source of uncertainty in global CH4 budgets. Here, we aim to improve the realism of wetland representation in the U.S. Department of Energy's Exascale Earth System Model land surface model, ELM, there...

Full description

Saved in:
Bibliographic Details
Main Authors: Theresia Yazbeck, Gil Bohrer, Madeline E. Scyphers, Justine E. C. Missik, Oleksandr Shchehlov, Eric J. Ward, Sergio L. Merino, Robert Bordelon, Diana Taj, Jorge A. Villa, Kelly Wrighton, Qing Zhu, William J. Riley
Format: Article
Language:English
Published: American Geophysical Union (AGU) 2025-02-01
Series:Journal of Advances in Modeling Earth Systems
Subjects:
Online Access:https://doi.org/10.1029/2024MS004396
Tags: Add Tag
No Tags, Be the first to tag this record!