Smoothing Estimation of Parameters in Censored Quantile Linear Regression Model

In this paper, we propose a smoothing estimation method for censored quantile regression models. The method associates the convolutional smoothing estimation with the loss function, which is quadratically derivable and globally convex by using a non-negative kernel function. Thus, the parameters of...

Full description

Saved in:
Bibliographic Details
Main Authors: Mingquan Wang, Xiaohua Ma, Xinrui Wang, Jun Wang, Xiuqing Zhou, Qibing Gao
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/2/192
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588039719747584
author Mingquan Wang
Xiaohua Ma
Xinrui Wang
Jun Wang
Xiuqing Zhou
Qibing Gao
author_facet Mingquan Wang
Xiaohua Ma
Xinrui Wang
Jun Wang
Xiuqing Zhou
Qibing Gao
author_sort Mingquan Wang
collection DOAJ
description In this paper, we propose a smoothing estimation method for censored quantile regression models. The method associates the convolutional smoothing estimation with the loss function, which is quadratically derivable and globally convex by using a non-negative kernel function. Thus, the parameters of the regression model can be computed by using the gradient-based iterative algorithm. We demonstrate the convergence speed and asymptotic properties of the smoothing estimation for large samples in high dimensions. Numerical simulations show that the smoothing estimation method for censored quantile regression models improves the estimation accuracy, computational speed, and robustness over the classical parameter estimation method. The simulation results also show that the parametric methods perform better than the KM method in estimating the distribution function of the censored variables. Even if there is an error setting in the distribution estimation, the smoothing estimation does not fluctuate too much.
format Article
id doaj-art-0eb5a66ea4c14418bee861b55ce3341c
institution Kabale University
issn 2227-7390
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-0eb5a66ea4c14418bee861b55ce3341c2025-01-24T13:39:41ZengMDPI AGMathematics2227-73902025-01-0113219210.3390/math13020192Smoothing Estimation of Parameters in Censored Quantile Linear Regression ModelMingquan Wang0Xiaohua Ma1Xinrui Wang2Jun Wang3Xiuqing Zhou4Qibing Gao5School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, ChinaSchool of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, ChinaCollege of International Languages and Cultures, Hohai University, Nanjing 211100, ChinaSchool of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, ChinaSchool of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, ChinaSchool of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, ChinaIn this paper, we propose a smoothing estimation method for censored quantile regression models. The method associates the convolutional smoothing estimation with the loss function, which is quadratically derivable and globally convex by using a non-negative kernel function. Thus, the parameters of the regression model can be computed by using the gradient-based iterative algorithm. We demonstrate the convergence speed and asymptotic properties of the smoothing estimation for large samples in high dimensions. Numerical simulations show that the smoothing estimation method for censored quantile regression models improves the estimation accuracy, computational speed, and robustness over the classical parameter estimation method. The simulation results also show that the parametric methods perform better than the KM method in estimating the distribution function of the censored variables. Even if there is an error setting in the distribution estimation, the smoothing estimation does not fluctuate too much.https://www.mdpi.com/2227-7390/13/2/192censored quantile regressionhigh-dimensional datasmoothing estimation
spellingShingle Mingquan Wang
Xiaohua Ma
Xinrui Wang
Jun Wang
Xiuqing Zhou
Qibing Gao
Smoothing Estimation of Parameters in Censored Quantile Linear Regression Model
Mathematics
censored quantile regression
high-dimensional data
smoothing estimation
title Smoothing Estimation of Parameters in Censored Quantile Linear Regression Model
title_full Smoothing Estimation of Parameters in Censored Quantile Linear Regression Model
title_fullStr Smoothing Estimation of Parameters in Censored Quantile Linear Regression Model
title_full_unstemmed Smoothing Estimation of Parameters in Censored Quantile Linear Regression Model
title_short Smoothing Estimation of Parameters in Censored Quantile Linear Regression Model
title_sort smoothing estimation of parameters in censored quantile linear regression model
topic censored quantile regression
high-dimensional data
smoothing estimation
url https://www.mdpi.com/2227-7390/13/2/192
work_keys_str_mv AT mingquanwang smoothingestimationofparametersincensoredquantilelinearregressionmodel
AT xiaohuama smoothingestimationofparametersincensoredquantilelinearregressionmodel
AT xinruiwang smoothingestimationofparametersincensoredquantilelinearregressionmodel
AT junwang smoothingestimationofparametersincensoredquantilelinearregressionmodel
AT xiuqingzhou smoothingestimationofparametersincensoredquantilelinearregressionmodel
AT qibinggao smoothingestimationofparametersincensoredquantilelinearregressionmodel