A comprehensive multi-agent deep reinforcement learning framework with adaptive interaction strategies for contention window optimization in IEEE 802.11 Wireless LANs
This study introduces the Multi-Agent, Multi-Parameter, Interaction-Driven Contention Window Optimization (M2I-CWO) algorithm, a novel Multi-Agent Deep Reinforcement Learning (MADRL) framework designed to optimize multiple CW parameters in IEEE 802.11 Wireless LANs. Unlike single-parameter or specia...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-06-01
|
| Series: | ICT Express |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2405959525000104 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|