Optimization of Gradient Catalyst Layers in PEMFCs Based on Neural Network Models

The high cost of platinum (Pt) catalysts impedes the widespread commercialization of proton exchange membrane fuel cells (PEMFCs). Reducing Pt loading will increase local oxygen transport resistance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="in...

Full description

Saved in:
Bibliographic Details
Main Authors: Guo-Rui Zhao, Wen-Zhen Fang, Zi-Hao Xuan, Wen-Quan Tao
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/10/2570
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849711319277633536
author Guo-Rui Zhao
Wen-Zhen Fang
Zi-Hao Xuan
Wen-Quan Tao
author_facet Guo-Rui Zhao
Wen-Zhen Fang
Zi-Hao Xuan
Wen-Quan Tao
author_sort Guo-Rui Zhao
collection DOAJ
description The high cost of platinum (Pt) catalysts impedes the widespread commercialization of proton exchange membrane fuel cells (PEMFCs). Reducing Pt loading will increase local oxygen transport resistance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>R</mi><mrow><mi>Pt</mi></mrow><mrow><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></msubsup></mrow></semantics></math></inline-formula>) and decrease performance. Due to the oxygen transport resistance, the reactants in the cathode catalyst layer (CCL) are not evenly distributed. The gradient structure can cooperate with the unevenly distributed reactants in CL to enhance the Pt utilization. In this work, a one-dimensional gradient CCL model considering <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>R</mi><mrow><mi>Pt</mi></mrow><mrow><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></msubsup></mrow></semantics></math></inline-formula> is established, and the optimal gradient structure is optimized by combining the artificial neural network (ANN) model and the genetic algorithm (GA). The optimal structure parameters of non-gradient CCL are <i>l</i><sub>CL</sub> equal to 8.86 μm, <i>r</i><sub>C</sub> equal to 36.82 nm, and I/C equal to 0.48, with the objective of maximum current density (<i>I</i><sub>max</sub>); <i>l</i><sub>CL</sub> equal to 4.24 μm, <i>r</i><sub>C</sub> equal to 36.60 nm, and I/C equal to 0.76, with the objective of maximum power density (<i>P</i><sub>max</sub>). For the gradient CCL, the best gradient distribution enables Pt loading to increase from the membrane (MEM) side to the gas diffusion layer (GDL) side and the ionomer volume fraction to decrease from the MEM side to the GDL side.
format Article
id doaj-art-0a6dd73ec8c740639adf4012fc6d7ccd
institution DOAJ
issn 1996-1073
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj-art-0a6dd73ec8c740639adf4012fc6d7ccd2025-08-20T03:14:39ZengMDPI AGEnergies1996-10732025-05-011810257010.3390/en18102570Optimization of Gradient Catalyst Layers in PEMFCs Based on Neural Network ModelsGuo-Rui Zhao0Wen-Zhen Fang1Zi-Hao Xuan2Wen-Quan Tao3Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, ChinaKey Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, ChinaKey Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, ChinaKey Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, ChinaThe high cost of platinum (Pt) catalysts impedes the widespread commercialization of proton exchange membrane fuel cells (PEMFCs). Reducing Pt loading will increase local oxygen transport resistance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>R</mi><mrow><mi>Pt</mi></mrow><mrow><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></msubsup></mrow></semantics></math></inline-formula>) and decrease performance. Due to the oxygen transport resistance, the reactants in the cathode catalyst layer (CCL) are not evenly distributed. The gradient structure can cooperate with the unevenly distributed reactants in CL to enhance the Pt utilization. In this work, a one-dimensional gradient CCL model considering <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>R</mi><mrow><mi>Pt</mi></mrow><mrow><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></msubsup></mrow></semantics></math></inline-formula> is established, and the optimal gradient structure is optimized by combining the artificial neural network (ANN) model and the genetic algorithm (GA). The optimal structure parameters of non-gradient CCL are <i>l</i><sub>CL</sub> equal to 8.86 μm, <i>r</i><sub>C</sub> equal to 36.82 nm, and I/C equal to 0.48, with the objective of maximum current density (<i>I</i><sub>max</sub>); <i>l</i><sub>CL</sub> equal to 4.24 μm, <i>r</i><sub>C</sub> equal to 36.60 nm, and I/C equal to 0.76, with the objective of maximum power density (<i>P</i><sub>max</sub>). For the gradient CCL, the best gradient distribution enables Pt loading to increase from the membrane (MEM) side to the gas diffusion layer (GDL) side and the ionomer volume fraction to decrease from the MEM side to the GDL side.https://www.mdpi.com/1996-1073/18/10/2570proton exchange membrane fuel cellcathode catalyst layersgradient catalyst layerdata-driven optimization
spellingShingle Guo-Rui Zhao
Wen-Zhen Fang
Zi-Hao Xuan
Wen-Quan Tao
Optimization of Gradient Catalyst Layers in PEMFCs Based on Neural Network Models
Energies
proton exchange membrane fuel cell
cathode catalyst layers
gradient catalyst layer
data-driven optimization
title Optimization of Gradient Catalyst Layers in PEMFCs Based on Neural Network Models
title_full Optimization of Gradient Catalyst Layers in PEMFCs Based on Neural Network Models
title_fullStr Optimization of Gradient Catalyst Layers in PEMFCs Based on Neural Network Models
title_full_unstemmed Optimization of Gradient Catalyst Layers in PEMFCs Based on Neural Network Models
title_short Optimization of Gradient Catalyst Layers in PEMFCs Based on Neural Network Models
title_sort optimization of gradient catalyst layers in pemfcs based on neural network models
topic proton exchange membrane fuel cell
cathode catalyst layers
gradient catalyst layer
data-driven optimization
url https://www.mdpi.com/1996-1073/18/10/2570
work_keys_str_mv AT guoruizhao optimizationofgradientcatalystlayersinpemfcsbasedonneuralnetworkmodels
AT wenzhenfang optimizationofgradientcatalystlayersinpemfcsbasedonneuralnetworkmodels
AT zihaoxuan optimizationofgradientcatalystlayersinpemfcsbasedonneuralnetworkmodels
AT wenquantao optimizationofgradientcatalystlayersinpemfcsbasedonneuralnetworkmodels