Transport Numbers and Electroosmosis in Cation-Exchange Membranes with Aqueous Electrolyte Solutions of HCl, LiCl, NaCl, KCl, MgCl<sub>2</sub>, CaCl<sub>2</sub> and NH<sub>4</sub>Cl

Electroosmosis reduces the available energy from ion transport arising due to concentration gradients across ion-exchange membranes. This work builds on previous efforts to describe the electroosmosis, the permselectivity and the apparent transport number of a membrane, and we show new measurements...

Full description

Saved in:
Bibliographic Details
Main Authors: Simon B. B. Solberg, Zelalem B. Deress, Marte H. Hvamstad, Odne S. Burheim
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/1/75
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588529749721088
author Simon B. B. Solberg
Zelalem B. Deress
Marte H. Hvamstad
Odne S. Burheim
author_facet Simon B. B. Solberg
Zelalem B. Deress
Marte H. Hvamstad
Odne S. Burheim
author_sort Simon B. B. Solberg
collection DOAJ
description Electroosmosis reduces the available energy from ion transport arising due to concentration gradients across ion-exchange membranes. This work builds on previous efforts to describe the electroosmosis, the permselectivity and the apparent transport number of a membrane, and we show new measurements of concentration cells with the Selemion CMVN cation-exchange membrane and single-salt solutions of HCl, LiCl, NaCl, MgCl<sub>2</sub>, CaCl<sub>2</sub> and NH<sub>4</sub>Cl. Ionic transport numbers and electroosmotic water transport relative to the membrane are efficiently obtained from a relatively new permselectivity analysis method. We find that the membrane can be described as perfectly selective towards the migration of the cation, and that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>Cl</mi><mo>−</mo></msup></mrow></semantics></math></inline-formula> does not contribute to the net electric current. For the investigated salts, we obtained water transference coefficients, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mi>w</mi></msub></semantics></math></inline-formula>, of 1.1 ± 0.8 for HCl, 9.2 ± 0.8 for LiCl, 4.9 ± 0.2 for NaCl, 3.7 ± 0.4 for KCl, 8.5 ± 0.5 for MgCl<sub>2</sub>, 6.2 ± 0.6 for CaCl<sub>2</sub> and 3.8 ± 0.5 for NH<sub>4</sub>Cl. However, as the test compartment concentrations of LiCl, MgCl<sub>2</sub> and CaCl<sub>2</sub> increased past 3.5, 1.3 and 1.4 mol kg<sup>−1</sup>, respectively, the water transference coefficients appeared to decrease. The presented methods are generally useful for characterising concentration polarisation phenomena in electrochemistry, and may aid in the design of more efficient electrochemical cells.
format Article
id doaj-art-09592f3ff6334f239eafd5f2a6b93cf8
institution Kabale University
issn 1099-4300
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj-art-09592f3ff6334f239eafd5f2a6b93cf82025-01-24T13:31:54ZengMDPI AGEntropy1099-43002025-01-012717510.3390/e27010075Transport Numbers and Electroosmosis in Cation-Exchange Membranes with Aqueous Electrolyte Solutions of HCl, LiCl, NaCl, KCl, MgCl<sub>2</sub>, CaCl<sub>2</sub> and NH<sub>4</sub>ClSimon B. B. Solberg0Zelalem B. Deress1Marte H. Hvamstad2Odne S. Burheim3Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, NorwayDepartment of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, NorwayDepartment of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, NorwayDepartment of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, NorwayElectroosmosis reduces the available energy from ion transport arising due to concentration gradients across ion-exchange membranes. This work builds on previous efforts to describe the electroosmosis, the permselectivity and the apparent transport number of a membrane, and we show new measurements of concentration cells with the Selemion CMVN cation-exchange membrane and single-salt solutions of HCl, LiCl, NaCl, MgCl<sub>2</sub>, CaCl<sub>2</sub> and NH<sub>4</sub>Cl. Ionic transport numbers and electroosmotic water transport relative to the membrane are efficiently obtained from a relatively new permselectivity analysis method. We find that the membrane can be described as perfectly selective towards the migration of the cation, and that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>Cl</mi><mo>−</mo></msup></mrow></semantics></math></inline-formula> does not contribute to the net electric current. For the investigated salts, we obtained water transference coefficients, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mi>w</mi></msub></semantics></math></inline-formula>, of 1.1 ± 0.8 for HCl, 9.2 ± 0.8 for LiCl, 4.9 ± 0.2 for NaCl, 3.7 ± 0.4 for KCl, 8.5 ± 0.5 for MgCl<sub>2</sub>, 6.2 ± 0.6 for CaCl<sub>2</sub> and 3.8 ± 0.5 for NH<sub>4</sub>Cl. However, as the test compartment concentrations of LiCl, MgCl<sub>2</sub> and CaCl<sub>2</sub> increased past 3.5, 1.3 and 1.4 mol kg<sup>−1</sup>, respectively, the water transference coefficients appeared to decrease. The presented methods are generally useful for characterising concentration polarisation phenomena in electrochemistry, and may aid in the design of more efficient electrochemical cells.https://www.mdpi.com/1099-4300/27/1/75ion-exchange membraneelectrodialysispermselectivityelectroosmosistransport number
spellingShingle Simon B. B. Solberg
Zelalem B. Deress
Marte H. Hvamstad
Odne S. Burheim
Transport Numbers and Electroosmosis in Cation-Exchange Membranes with Aqueous Electrolyte Solutions of HCl, LiCl, NaCl, KCl, MgCl<sub>2</sub>, CaCl<sub>2</sub> and NH<sub>4</sub>Cl
Entropy
ion-exchange membrane
electrodialysis
permselectivity
electroosmosis
transport number
title Transport Numbers and Electroosmosis in Cation-Exchange Membranes with Aqueous Electrolyte Solutions of HCl, LiCl, NaCl, KCl, MgCl<sub>2</sub>, CaCl<sub>2</sub> and NH<sub>4</sub>Cl
title_full Transport Numbers and Electroosmosis in Cation-Exchange Membranes with Aqueous Electrolyte Solutions of HCl, LiCl, NaCl, KCl, MgCl<sub>2</sub>, CaCl<sub>2</sub> and NH<sub>4</sub>Cl
title_fullStr Transport Numbers and Electroosmosis in Cation-Exchange Membranes with Aqueous Electrolyte Solutions of HCl, LiCl, NaCl, KCl, MgCl<sub>2</sub>, CaCl<sub>2</sub> and NH<sub>4</sub>Cl
title_full_unstemmed Transport Numbers and Electroosmosis in Cation-Exchange Membranes with Aqueous Electrolyte Solutions of HCl, LiCl, NaCl, KCl, MgCl<sub>2</sub>, CaCl<sub>2</sub> and NH<sub>4</sub>Cl
title_short Transport Numbers and Electroosmosis in Cation-Exchange Membranes with Aqueous Electrolyte Solutions of HCl, LiCl, NaCl, KCl, MgCl<sub>2</sub>, CaCl<sub>2</sub> and NH<sub>4</sub>Cl
title_sort transport numbers and electroosmosis in cation exchange membranes with aqueous electrolyte solutions of hcl licl nacl kcl mgcl sub 2 sub cacl sub 2 sub and nh sub 4 sub cl
topic ion-exchange membrane
electrodialysis
permselectivity
electroosmosis
transport number
url https://www.mdpi.com/1099-4300/27/1/75
work_keys_str_mv AT simonbbsolberg transportnumbersandelectroosmosisincationexchangemembraneswithaqueouselectrolytesolutionsofhclliclnaclkclmgclsub2subcaclsub2subandnhsub4subcl
AT zelalembderess transportnumbersandelectroosmosisincationexchangemembraneswithaqueouselectrolytesolutionsofhclliclnaclkclmgclsub2subcaclsub2subandnhsub4subcl
AT martehhvamstad transportnumbersandelectroosmosisincationexchangemembraneswithaqueouselectrolytesolutionsofhclliclnaclkclmgclsub2subcaclsub2subandnhsub4subcl
AT odnesburheim transportnumbersandelectroosmosisincationexchangemembraneswithaqueouselectrolytesolutionsofhclliclnaclkclmgclsub2subcaclsub2subandnhsub4subcl