On Erdős sums of almost primes
In 1935, Erdős proved that the sums $f_k=\sum _n 1/(n\log n)$, over integers $n$ with exactly $k$ prime factors, are bounded by an absolute constant, and in 1993 Zhang proved that $f_k$ is maximized by the prime sum $f_1=\sum _p 1/(p\log p)$. According to a 2013 conjecture of Banks and Martin, the s...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-11-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.650/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|