Cystatin from Austrelaps superbus snake venom as a model for identifying potential inhibitors of Trypanosoma cruzi cruzain
Abstract Background: Chagas disease (CD), caused by Trypanosoma cruzi, affects approximately seven million individuals worldwide, with the highest number of cases in Latin America. CD has two phases, of which the chronic phase is characterized by reduced efficacy in drug therapies. This and other f...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
SciELO
2025-02-01
|
| Series: | Journal of Venomous Animals and Toxins including Tropical Diseases |
| Subjects: | |
| Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992025000100303&lng=en&tlng=en |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849722974489280512 |
|---|---|
| author | Jorge Javier Alfonso Ruiz Díaz Ana Fidelina Gómez Garay Anderson Makoto Kayano Rudson Holanda Aleff Ferreira Francisco Christian Collins Kuehn Andreimar Martins Soares Celeste Vega Leonardo de Azevedo Calderon |
| author_facet | Jorge Javier Alfonso Ruiz Díaz Ana Fidelina Gómez Garay Anderson Makoto Kayano Rudson Holanda Aleff Ferreira Francisco Christian Collins Kuehn Andreimar Martins Soares Celeste Vega Leonardo de Azevedo Calderon |
| author_sort | Jorge Javier Alfonso Ruiz Díaz |
| collection | DOAJ |
| description | Abstract Background: Chagas disease (CD), caused by Trypanosoma cruzi, affects approximately seven million individuals worldwide, with the highest number of cases in Latin America. CD has two phases, of which the chronic phase is characterized by reduced efficacy in drug therapies. This and other factors make developing new strategies that aim to identify molecules capable of becoming alternatives to or complement current chemotherapy vitally important. Methods: Cruzain and AsCystatin were obtained recombinantly through expression in E. coli. Bioinformatic assays were conducted with both molecules, followed by in vitro enzyme inhibition assays. Subsequently, in silico studies allowed for the design of peptides, which were then assessed for molecular interactions with cruzain. The designed peptides were synthesized, and their inhibitory potential on cruzain and their trypanocidal and cytotoxic effects in vitro were finally assessed. Results: AsCystatin, a potential inhibitor of cysteine proteases, was identified from previously published scientific literature. In silico assays suggested that AsCystatin interacts with key regions of cruzain, and was subsequently produced through heterologous expression, obtaining a protein with a high degree of purity. Next, the inhibition of AsCystatin on the activity of cruzain was assessed, observing that approximately 20 µM of cystatin could inhibit 50% of the catalytic activity of the recombinant enzyme. Based on the in-silico analysis performed previously, original, and modified peptides were designed and tested, which allowed for identifying four peptides with inhibitory capacity on the enzymatic activity of cruzain. Finally, three of these peptides showed trypanocidal activity on epimastigote forms of T. cruzi in in vitro models. Conclusion: It was possible to identify AsCystatin and four peptides derived from this protein with inhibitory activity on cruzain, highlighting the trypanocidal effect of these peptides observed in in vitro assays. |
| format | Article |
| id | doaj-art-045ac46d554048ee9b116d11b3a803f7 |
| institution | DOAJ |
| issn | 1678-9199 |
| language | English |
| publishDate | 2025-02-01 |
| publisher | SciELO |
| record_format | Article |
| series | Journal of Venomous Animals and Toxins including Tropical Diseases |
| spelling | doaj-art-045ac46d554048ee9b116d11b3a803f72025-08-20T03:11:10ZengSciELOJournal of Venomous Animals and Toxins including Tropical Diseases1678-91992025-02-013110.1590/1678-9199-jvatitd-2024-0055Cystatin from Austrelaps superbus snake venom as a model for identifying potential inhibitors of Trypanosoma cruzi cruzainJorge Javier Alfonso Ruiz Díazhttps://orcid.org/0000-0003-3189-0037Ana Fidelina Gómez Garayhttps://orcid.org/0000-0003-3737-7015Anderson Makoto Kayanohttps://orcid.org/0000-0003-4418-7850Rudson Holandahttps://orcid.org/0000-0002-4599-6265Aleff Ferreira Franciscohttps://orcid.org/0000-0002-6492-5729Christian Collins Kuehnhttps://orcid.org/0000-0003-1855-3626Andreimar Martins Soareshttps://orcid.org/0000-0003-1032-2188Celeste Vegahttps://orcid.org/0000-0003-3533-3211Leonardo de Azevedo Calderonhttps://orcid.org/0000-0003-2669-092XAbstract Background: Chagas disease (CD), caused by Trypanosoma cruzi, affects approximately seven million individuals worldwide, with the highest number of cases in Latin America. CD has two phases, of which the chronic phase is characterized by reduced efficacy in drug therapies. This and other factors make developing new strategies that aim to identify molecules capable of becoming alternatives to or complement current chemotherapy vitally important. Methods: Cruzain and AsCystatin were obtained recombinantly through expression in E. coli. Bioinformatic assays were conducted with both molecules, followed by in vitro enzyme inhibition assays. Subsequently, in silico studies allowed for the design of peptides, which were then assessed for molecular interactions with cruzain. The designed peptides were synthesized, and their inhibitory potential on cruzain and their trypanocidal and cytotoxic effects in vitro were finally assessed. Results: AsCystatin, a potential inhibitor of cysteine proteases, was identified from previously published scientific literature. In silico assays suggested that AsCystatin interacts with key regions of cruzain, and was subsequently produced through heterologous expression, obtaining a protein with a high degree of purity. Next, the inhibition of AsCystatin on the activity of cruzain was assessed, observing that approximately 20 µM of cystatin could inhibit 50% of the catalytic activity of the recombinant enzyme. Based on the in-silico analysis performed previously, original, and modified peptides were designed and tested, which allowed for identifying four peptides with inhibitory capacity on the enzymatic activity of cruzain. Finally, three of these peptides showed trypanocidal activity on epimastigote forms of T. cruzi in in vitro models. Conclusion: It was possible to identify AsCystatin and four peptides derived from this protein with inhibitory activity on cruzain, highlighting the trypanocidal effect of these peptides observed in in vitro assays.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992025000100303&lng=en&tlng=enChagas diseaseCruzainInhibitorsSnake venomCystatins |
| spellingShingle | Jorge Javier Alfonso Ruiz Díaz Ana Fidelina Gómez Garay Anderson Makoto Kayano Rudson Holanda Aleff Ferreira Francisco Christian Collins Kuehn Andreimar Martins Soares Celeste Vega Leonardo de Azevedo Calderon Cystatin from Austrelaps superbus snake venom as a model for identifying potential inhibitors of Trypanosoma cruzi cruzain Journal of Venomous Animals and Toxins including Tropical Diseases Chagas disease Cruzain Inhibitors Snake venom Cystatins |
| title | Cystatin from Austrelaps superbus snake venom as a model for identifying potential inhibitors of Trypanosoma cruzi cruzain |
| title_full | Cystatin from Austrelaps superbus snake venom as a model for identifying potential inhibitors of Trypanosoma cruzi cruzain |
| title_fullStr | Cystatin from Austrelaps superbus snake venom as a model for identifying potential inhibitors of Trypanosoma cruzi cruzain |
| title_full_unstemmed | Cystatin from Austrelaps superbus snake venom as a model for identifying potential inhibitors of Trypanosoma cruzi cruzain |
| title_short | Cystatin from Austrelaps superbus snake venom as a model for identifying potential inhibitors of Trypanosoma cruzi cruzain |
| title_sort | cystatin from austrelaps superbus snake venom as a model for identifying potential inhibitors of trypanosoma cruzi cruzain |
| topic | Chagas disease Cruzain Inhibitors Snake venom Cystatins |
| url | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992025000100303&lng=en&tlng=en |
| work_keys_str_mv | AT jorgejavieralfonsoruizdiaz cystatinfromaustrelapssuperbussnakevenomasamodelforidentifyingpotentialinhibitorsoftrypanosomacruzicruzain AT anafidelinagomezgaray cystatinfromaustrelapssuperbussnakevenomasamodelforidentifyingpotentialinhibitorsoftrypanosomacruzicruzain AT andersonmakotokayano cystatinfromaustrelapssuperbussnakevenomasamodelforidentifyingpotentialinhibitorsoftrypanosomacruzicruzain AT rudsonholanda cystatinfromaustrelapssuperbussnakevenomasamodelforidentifyingpotentialinhibitorsoftrypanosomacruzicruzain AT aleffferreirafrancisco cystatinfromaustrelapssuperbussnakevenomasamodelforidentifyingpotentialinhibitorsoftrypanosomacruzicruzain AT christiancollinskuehn cystatinfromaustrelapssuperbussnakevenomasamodelforidentifyingpotentialinhibitorsoftrypanosomacruzicruzain AT andreimarmartinssoares cystatinfromaustrelapssuperbussnakevenomasamodelforidentifyingpotentialinhibitorsoftrypanosomacruzicruzain AT celestevega cystatinfromaustrelapssuperbussnakevenomasamodelforidentifyingpotentialinhibitorsoftrypanosomacruzicruzain AT leonardodeazevedocalderon cystatinfromaustrelapssuperbussnakevenomasamodelforidentifyingpotentialinhibitorsoftrypanosomacruzicruzain |