Prediction of rare and anomalous minerals using anomaly detection and machine learning techniques
This study applies machine learning to detect and classify anomalous minerals within a large mineralogical dataset, enhancing geological exploration and resource identification. Using Isolation Forest and One-Class SVM, we identified rare minerals with distinct physical and chemical properties that...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-06-01
|
| Series: | Applied Computing and Geosciences |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2590197425000321 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|