Search alternatives:
prediction » reduction (Expand Search)
Showing 2,521 - 2,540 results of 69,932 for search 'https (predictive OR (prediction OR education)) model', query time: 0.39s Refine Results
  1. 2521

    Class-balanced negative training sets for improving classifier model predictions of enhancer-promoter interactions by Osamu Maruyama, Tsukasa Koga

    Published 2025-06-01
    “…Further advanced methods in generating negative EPIs should further improve prediction accuracy. The source code is available at https://github.com/maruyama-lab-design/CBOEP2 .…”
    Get full text
    Article
  2. 2522
  3. 2523
  4. 2524

    Interpretable artificial intelligence model for predicting heart failure severity after acute myocardial infarction by Chenglong Guo, Binyu Gao, Xuexue Han, Tianxing Zhang, Tianqi Tao, Jinggang Xia, Honglei Liu

    Published 2025-05-01
    “…This study aimed to develop an interpretable artificial intelligence (AI) model for HF severity prediction using multidimensional clinical data. …”
    Get full text
    Article
  5. 2525

    Interpretable web-based machine learning model for predicting intravenous immunoglobulin resistance in Kawasaki disease by Ying He, Fan Lin, Xin Zheng, Qiaobin Chen, Meng Xiao, Xiaoting Lin, Hongbiao Huang

    Published 2025-06-01
    “…This study presents a region-specific, interpretable ML model for early IVIG resistance prediction in KD. …”
    Get full text
    Article
  6. 2526

    Improving drug-drug interaction prediction via in-context learning and judging with large language models by He Qi, He Qi, Xiaoqiang Li, Chengcheng Zhang, Tianyi Zhao, Tianyi Zhao

    Published 2025-06-01
    “…To further refine predictions, we employ GPT-4 as a discriminator to assess the relevance of predictions generated by multiple LLMs.ResultsDDI-JUDGE achieves the best performance among all models in both zero-shot and few-shot settings, with an AUC of 0.642/0.788 and AUPR of 0.629/0.801, respectively. …”
    Get full text
    Article
  7. 2527
  8. 2528

    XGBoost models based on non imaging features for the prediction of mild cognitive impairment in older adults by Miguel A. Fernández-Blázquez, José M. Ruiz-Sánchez de León, Rubén Sanz-Blasco, Emilio Verche, Marina Ávila-Villanueva, María José Gil-Moreno, Mercedes Montenegro-Peña, Carmen Terrón, Cristina Fernández-García, Jaime Gómez-Ramírez

    Published 2025-08-01
    “…The aim of this study is to develop and validate machine learning (ML) models based on non-imaging features to predict the risk of MCI conversion in cognitively healthy older adults over a three-year period. …”
    Get full text
    Article
  9. 2529
  10. 2530

    Integrative machine learning model for subtype identification and prognostic prediction in lung squamous cell carcinoma by Guangliang Duan, Qi Huo, Wei Ni, Fei Ding, Yuefang Ye, Tingting Tang, Huiping Dai

    Published 2025-05-01
    “…Subsequently, four survival machine learning models were developed to predict LUSC prognosis. These models were validated in the testing sets and integrated into an online tool to assist in survival prediction. …”
    Get full text
    Article
  11. 2531

    AlphaBind, a domain-specific model to predict and optimize antibody–antigen binding affinity by Aditya A. Agarwal, James Harrang, David Noble, Kerry L. McGowan, Adrian W. Lange, Emily Engelhart, Miranda C. Lahman, Jeffrey Adamo, Xin Yu, Oliver Serang, Kyle J. Minch, Kimberly Y. Wellman, David A. Younger, Randolph M. Lopez, Ryan O. Emerson

    Published 2025-12-01
    “…Recent advances in deep learning provide opportunities to address this challenge by learning sequence–function relationships to accurately predict fitness landscapes. These models enable efficient in silico prescreening and optimization of antibody candidates. …”
    Get full text
    Article
  12. 2532
  13. 2533
  14. 2534
  15. 2535
  16. 2536
  17. 2537
  18. 2538
  19. 2539
  20. 2540