Search alternatives:
development analysis » development goals (Expand Search)
Showing 441 - 460 results of 854 for search 'Inverse data development analysis', query time: 0.16s Refine Results
  1. 441
  2. 442

    Spatiotemporal distribution of global peatland area during the Holocene by Hui Liu, Haibin Wu, Wenchao Zhang, Jie Yu, Junyan Geng, Xiuqin Le, Yanyan Yu

    Published 2025-01-01
    “…Using buffer analysis (BA) and inverse distance weighted (IDW) interpolation of peat data, we reconstructed spatiotemporal changes in global peatland area at a spatial resolution of 0.5° × 0.5° for every 1,000 years period during Holocene. …”
    Get full text
    Article
  3. 443
  4. 444
  5. 445

    A Method for Landslide Deformation Detection Based on Projection Surface Element Matching of 3D Models by Mengxi Sun, Hui Cao, Yansong Duan

    Published 2025-04-01
    “…Through this research, we aim to provide critical data support and a scientific foundation for the prevention of landslide disasters and the management of geological hazards. …”
    Get full text
    Article
  6. 446
  7. 447
  8. 448
  9. 449
  10. 450
  11. 451

    Global Carbon Budget 2024 by P. Friedlingstein, P. Friedlingstein, M. O'Sullivan, M. W. Jones, R. M. Andrew, J. Hauck, J. Hauck, P. Landschützer, C. Le Quéré, H. Li, H. Li, I. T. Luijkx, A. Olsen, A. Olsen, G. P. Peters, W. Peters, W. Peters, J. Pongratz, J. Pongratz, C. Schwingshackl, S. Sitch, J. G. Canadell, P. Ciais, R. B. Jackson, R. B. Jackson, S. R. Alin, A. Arneth, V. Arora, N. R. Bates, M. Becker, M. Becker, N. Bellouin, C. F. Berghoff, H. C. Bittig, L. Bopp, P. Cadule, K. Campbell, M. A. Chamberlain, N. Chandra, F. Chevallier, L. P. Chini, T. Colligan, J. Decayeux, L. M. Djeutchouang, L. M. Djeutchouang, X. Dou, C. Duran Rojas, K. Enyo, W. Evans, A. R. Fay, R. A. Feely, D. J. Ford, A. Foster, T. Gasser, M. Gehlen, T. Gkritzalis, G. Grassi, L. Gregor, N. Gruber, Ö. Gürses, I. Harris, M. Hefner, M. Hefner, J. Heinke, G. C. Hurtt, Y. Iida, T. Ilyina, T. Ilyina, T. Ilyina, A. R. Jacobson, A. R. Jacobson, A. K. Jain, T. Jarníková, A. Jersild, F. Jiang, Z. Jin, Z. Jin, E. Kato, R. F. Keeling, K. Klein Goldewijk, J. Knauer, J. Knauer, J. I. Korsbakken, X. Lan, X. Lan, S. K. Lauvset, S. K. Lauvset, N. Lefèvre, Z. Liu, J. Liu, J. Liu, L. Ma, S. Maksyutov, G. Marland, G. Marland, N. Mayot, P. C. McGuire, N. Metzl, N. M. Monacci, E. J. Morgan, S.-I. Nakaoka, C. Neill, Y. Niwa, T. Nützel, L. Olivier, L. Olivier, T. Ono, P. I. Palmer, P. I. Palmer, D. Pierrot, Z. Qin, L. Resplandy, L. Resplandy, A. Roobaert, T. M. Rosan, C. Rödenbeck, J. Schwinger, J. Schwinger, T. L. Smallman, T. L. Smallman, S. M. Smith, R. Sospedra-Alfonso, T. Steinhoff, T. Steinhoff, Q. Sun, A. J. Sutton, R. Séférian, S. Takao, H. Tatebe, H. Tatebe, H. Tian, B. Tilbrook, B. Tilbrook, O. Torres, E. Tourigny, H. Tsujino, F. Tubiello, G. van der Werf, R. Wanninkhof, X. Wang, D. Yang, X. Yang, Z. Yu, W. Yuan, X. Yue, S. Zaehle, N. Zeng, N. Zeng, J. Zeng

    Published 2025-03-01
    Get full text
    Article
  12. 452

    Quantification of CO<sub>2</sub> hotspot emissions from OCO-3 SAM CO<sub>2</sub> satellite images using deep learning methods by J. Dumont Le Brazidec, J. Dumont Le Brazidec, P. Vanderbecken, A. Farchi, G. Broquet, G. Kuhlmann, M. Bocquet

    Published 2025-06-01
    “…The results are very promising, showing a relative difference in the predictions to reported emissions only slightly higher than the relative error diagnosed from the experiments with synthetic images. Furthermore, analysis of the area of the images in which the CNN-based inversion extracts the information for the quantification of the emissions, based on integrated-gradient techniques, demonstrates that the CNN effectively identifies the location of the plumes in the OCO-3 SAM images. …”
    Get full text
    Article
  13. 453
  14. 454
  15. 455

    EMPIRICAL EVIDENCES REGARDING THE RELATIONSHIP BETWEEN INNOVATION AND PERFORMANCE IN THE AGRICULTURE OF EUROPEAN UNION by Oana COCA, Gavril ȘTEFAN, Marilena MIRONIUC

    Published 2017-01-01
    “…To answer the research question, in the study there were used the following data analysis methods: multiple linear regression analysis, correlation analysis, comparative analysis. …”
    Get full text
    Article
  16. 456

    THE RESEARCH ON THE CHEMICAL CONTROL OF THE OSTRINIA NUBILALIS, IN NATURAL AND ARTIFICIAL INFESTATION CONDITIONS, IMPORTANT LINK IN INTEGRATED PEST MANAGEMENT by Adina TĂRĂU, Ana-Maria PĂCURAR, Felicia MUREȘANU, Laura ȘOPTEREAN, Felicia CHEȚAN, Andrei VARGA, Ioana PORUMB, Florin RUSSU, Loredana SUCIU

    Published 2019-01-01
    “…The purpose of the present paper is to carry out a study of research, based on analysis and of interpretation of statistical data provided mainly by the Romanian National Institute of Statistics, corroborated of course with theoretical aspects that allowed the evaluation of regional information on population structure in Bucharest-Ilfov. …”
    Get full text
    Article
  17. 457
  18. 458

    ADAPTATION OF ENTREPRENEURIAL EDUCATION AND TRAINING IN ECONOMICS FOR THE STUDENTS OF "ION IONESCU DE LA BRAD" UNIVERSITY OF LIFE SCIENCES (IULS) IAȘI, ROMANIA, IN THE CONTEXT OF C... by Carmen-Olguța BREZULEANU, Roxana MIHALACHE, Mădălina-Maria BREZULEANU, Elena UNGUREANU, Alina SIRGHEA

    Published 2024-01-01
    “…The paper used a quantitative (questionnaire) and a qualitative (bibliometric) analysis. The data studied through the research shows the need for final-year students to receive additional practical skills training for employability. …”
    Get full text
    Article
  19. 459

    Insomnia and Coronary Artery Diseases: A Mendelian Randomisation Study by Wenjuan Zhang, Lingfeng Zha, Jiangtao Dong, Qianwen Chen, Jianfei Wu, Tingting Tang, Ni Xia, Min Zhang, Jiao Jiao, Tian Xie, Chengqi Xu, Xin Tu, Shaofang Nie, Xiaoxia Fu, Tianyu Xu.

    Published 2021-09-01
    “…Conclusions:. All of the data indicated that some valuable variants might involve in the development of CAD by leading the insomnia. …”
    Get full text
    Article
  20. 460

    The impact of agricultural farmland scale management on land yield: a perspective based on the adoption of agricultural machinery in different production links by Wenrui Zhang

    Published 2025-04-01
    “…IntroductionThe existing research on the relationship between farm size and land yield has been controversial because it fails to clarify the differences in factor substitution and technological progress across machinery technologies used in different production links.MethodsBased on micro-level farmer data from the 2020 China Rural Revitalization Survey (CRRS) database, this paper uses a stochastic Frontier model (SFM) to systematically analyze the impact of machinery technology at different production links on the relationship between the farm size and land yield of staple crops, revealing the significant role of technological progress in promoting the development of farmland scale management.ConclusionThe research results indicate that before incorporating machinery technology variables, there is an “inverse relationship” between the farm size and land yield for all three crops, meaning that the larger the farm size, the lower land yield. …”
    Get full text
    Article