Showing 1 - 11 results of 11 for search 'Delta Omega', query time: 0.05s Refine Results
  1. 1

    Analysis of global dynamics in an attraction-repulsion model with nonlinear indirect signal and logistic source by Chang-Jian Wang, Jia-Yue Zhu

    Published 2024-10-01
    “…The following chemotaxis system has been considered: \begin{document}$ \begin{equation*} \left\{ \begin{array}{ll} v_{t} = \Delta v-\xi \nabla\cdot(v \nabla w_{1})+\chi \nabla\cdot(v \nabla w_{2})+\lambda v-\mu v^{\kappa},\ &\ \ x\in \Omega, \ t>0,\\[2.5mm] w_{1t} = \Delta w_{1}-w_{1}+w^{\kappa_{1}}, \ 0 = \Delta w-w+v^{\kappa_{2}}, \ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0 = \Delta w_{2}-w_{2}+v^{\kappa_{3}}, \ &\ \ x\in \Omega, \ t>0 , \end{array} \right. …”
    Get full text
    Article
  2. 2

    Boundedness and large time behavior of a signal-dependent motility system with nonlinear indirect signal production by Ya Tian, Jing Luo

    Published 2024-11-01
    “…In this paper, we study a chemotaxis system with nonlinear indirect signal production \begin{document}$ \left\{ {\begin{array}{*{20}{l}} {{u_t} = \Delta \left( {\gamma \left( v \right) u } \right)}+ru-\mu u^l, \quad &x\in \Omega, t>0, \\ {{v_t} = \Delta v - v + w^{\beta}}, \quad &x\in \Omega, t>0, \\ {{w_t} = - \delta w + u}, \quad &x\in \Omega, t>0, \end{array}} \right. …”
    Get full text
    Article
  3. 3

    A note on the global existence and boundedness of an N-dimensional parabolic-elliptic predator-prey system with indirect pursuit-evasion interaction by Liu Ling

    Published 2025-02-01
    “…We investigate the two-species chemotaxis predator-prey system given by the following system: ut=Δu−χ∇⋅(u∇w)+u(λ1−μ1ur1−1+av),x∈Ω,t>0,vt=Δv+ξ∇⋅(v∇z)+v(λ2−μ2vr2−1−bu),x∈Ω,t>0,0=Δw−w+v,x∈Ω,t>0,0=Δz−z+u,x∈Ω,t>0,\left\{\begin{array}{ll}{u}_{t}=\Delta u-\chi \nabla \cdot \left(u\nabla w)+u\left({\lambda }_{1}-{\mu }_{1}{u}^{{r}_{1}-1}+av),& x\in \Omega ,\hspace{0.33em}t\gt 0,\\ {v}_{t}=\Delta v+\xi \nabla \cdot \left(v\nabla z)+v\left({\lambda }_{2}-{\mu }_{2}{v}^{{r}_{2}-1}-bu),& x\in \Omega ,\hspace{0.33em}t\gt 0,\\ 0=\Delta w-w+v,& x\in \Omega ,\hspace{0.33em}t\gt 0,\\ 0=\Delta z-z+u,& x\in \Omega ,\hspace{0.33em}t\gt 0,\end{array}\right. in a bounded domain Ω⊂RN(N≥1)\Omega \subset {{\mathbb{R}}}^{N}\left(N\ge 1) with smooth boundary, where parameters χ,ξ,λi,μi>0\chi ,\xi ,{\lambda }_{i},{\mu }_{i}\gt 0, and ri>1(i=1,2){r}_{i}\gt 1\hspace{0.33em}\left(i=1,2). …”
    Get full text
    Article
  4. 4

    Global boundedness in a Keller-Segel system with nonlinear indirect signal consumption mechanism by Zihan Zheng, Juan Wang, Liming Cai

    Published 2024-08-01
    “…In this paper, we study a quasilinear chemotaxis model with a nonlinear indirect consumption mechanism$ \begin{equation*} \left\{ \begin{array}{ll} v_{1t} = \nabla \cdot\big(\psi(v_{1})\nabla v_{1}-\chi \phi(v_{1})\nabla v_{2}\big)+\lambda_{1}v_{1}-\lambda_{2}v_{1}^{\beta},\ &\ \ x\in \Omega, \ t>0,\\[2.5mm] v_{2t} = \Delta v_{2}-w^{\theta}v_{2}, \ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0 = \Delta w-w+v_{1}^{\alpha}, \ &\ \ x\in \Omega, \ t>0 ,\\[2.5mm] \end{array} \right. …”
    Get full text
    Article
  5. 5

    Boundedness of classical solutions to a chemotaxis consumption system with signal dependent motility and logistic source by Baghaei, Khadijeh

    Published 2023-11-01
    “…We consider the chemotaxis system: \begin{equation*} {\left\lbrace \begin{array}{ll} u_{t}=\nabla \cdot \big (\gamma (v) \nabla u-u \,\xi (v) \nabla v\big )+\mu \, u(1-u), & x\in \Omega , \ t>0, \\ v_{t}=\Delta v-uv, & x\in \Omega , \ t>0, \end{array}\right.} …”
    Get full text
    Article
  6. 6

    Massless limit and conformal soft limit for celestial massive amplitudes by Wei Fan

    Published 2025-01-01
    “…This can be compared with the conformal soft limit in celestial gluon amplitudes, where a singularity $$1/(\Delta -1)$$ 1 / ( Δ - 1 ) arises and the leading contribution comes from the soft energy $$\omega \rightarrow 0$$ ω → 0 . …”
    Get full text
    Article
  7. 7

    Blow-up of nonradial solutions to the hyperbolic-elliptic chemotaxis system with logistic source by Baghaei, khadijeh

    Published 2023-01-01
    “…This paper is concerned with the blow-up of solutions to the following hyperbolic-elliptic chemotaxis system: \begin{equation*} {\left\lbrace \begin{array}{ll} u_{t} =-\nabla \cdot (\chi u \nabla v)+g(u), \qquad x\in \Omega , \ t>0,\\ \;\;\; 0 =\Delta v-v+u, \hspace{58.33328pt}x\in \Omega , \ t>0, \end{array}\right.} …”
    Get full text
    Article
  8. 8

    Global boundedness of solutions to a chemotaxis consumption model with signal dependent motility and logistic source by Baghaei, Khadijeh

    Published 2024-11-01
    “…This paper deals with the following chemotaxis system: \begin{equation*} {\left\lbrace \begin{array}{ll} u_{t}=\nabla \cdot \big (\gamma (v) \,\nabla u-u \,\xi (v) \,\nabla v\big )+\mu \, u\,(1-u), & x\in \Omega , \ t>0, \\ v_{t}=\Delta v-uv, & x\in \Omega , \ t>0, \end{array}\right.} …”
    Get full text
    Article
  9. 9

    Global Solutions for a Nonlocal Problem with Logarithmic Source Term by Eugenio Lapa

    Published 2024-07-01
    “…The current paper discusses the global existence and asymptotic behavior of solutions of the following new nonlocal problem$$ u_{tt}- M\left(\displaystyle \int_{\Omega}|\nabla u|^{2}\, dx\right)\triangle u + \delta u_{t}= |u|^{\rho-2}u \log|u|, \quad \text{in}\ \Omega \times ]0,\infty[,  $$where\begin{equation*}M(s)=\left\{\begin{array}{ll}{a-bs,}&{\text{for}\ s \in [0,\frac{a}{b}[,}\\{0,}&{\text{for}\ s \in [\frac{a}{b}, +\infty[.}…”
    Get full text
    Article
  10. 10

    Enhancing Food Security via selecting Superior Camelina (Camelina sativa L.) parents: a positive approach incorporating pheno-morphological traits, fatty acids composition, and Toc... by Amin Ebrahimi, Hamzeh Minaei Chenar, Sajad Rashidi-Monfared, Danial Kahrizi

    Published 2025-01-01
    “…The analysis unveiled that the average content of omega-3, omega-6, and omega-9 fatty acids in the examined lines was approximately 33%, 20%, and 17%, respectively. …”
    Get full text
    Article
  11. 11

    Path Planning For A Mobile Robot Using The Chessboard Method And Gray Wolf Optimization Algorithm In Static And Dynamic Environments by Ali Hatami Zadeh, Javad Sharifi, Meysam Yadegar

    Published 2024-09-01
    “…Four types of grey wolves, namely alpha, beta, delta, and omega, are employed to simulate the leadership hierarchy. …”
    Get full text
    Article