Search alternatives:
predictive » prediction (Expand Search)
reduction » education (Expand Search)
Showing 58,701 - 58,720 results of 73,560 for search '(http OR https) (predictive OR reduction) model', query time: 0.82s Refine Results
  1. 58701
  2. 58702
  3. 58703

    Investigating the complementarity of thermal and physical soil organic carbon fractions by A. A. Delahaie, L. Cécillon, M. Stojanova, S. Abiven, P. Arbelet, D. Arrouays, F. Baudin, A. Bispo, L. Boulonne, C. Chenu, J. Heinonsalo, C. Jolivet, K. Karhu, M. Martin, L. Pacini, L. Pacini, C. Poeplau, C. Ratié, P. Roudier, N. P. A. Saby, F. Savignac, P. Barré

    Published 2024-11-01
    “…<p>Partitioning soil organic carbon (SOC) in fractions with different biogeochemical stability is useful to better understand and predict SOC dynamics and provide information related to soil health. …”
    Get full text
    Article
  4. 58704

    Pooled error variance and covariance estimation of sparse in situ soil moisture sensor measurements in agricultural fields in Flanders by M. G. A. Hendrickx, M. G. A. Hendrickx, J. Vanderborght, J. Vanderborght, P. Janssens, P. Janssens, P. Janssens, S. Bombeke, E. Matthyssen, A. Waverijn, J. Diels, J. Diels

    Published 2025-06-01
    “…These results demonstrate that the common assumption of uncorrelated random errors to determine parameter and model prediction uncertainty is not valid when measurements from sparse in situ soil moisture sensors are used to parameterize soil hydrological models. …”
    Get full text
    Article
  5. 58705

    WetCH<sub>4</sub>: a machine-learning-based upscaling of methane fluxes of northern wetlands during 2016–2022 by Q. Ying, Q. Ying, B. Poulter, J. D. Watts, K. A. Arndt, A.-M. Virkkala, L. Bruhwiler, Y. Oh, Y. Oh, B. M. Rogers, S. M. Natali, H. Sullivan, A. Armstrong, A. Armstrong, E. J. Ward, E. J. Ward, L. D. Schiferl, C. D. Elder, C. D. Elder, O. Peltola, A. Bartsch, A. R. Desai, E. Euskirchen, M. Göckede, B. Lehner, M. B. Nilsson, M. Peichl, O. Sonnentag, E.-S. Tuittila, T. Sachs, T. Sachs, A. Kalhori, M. Ueyama, Z. Zhang, Z. Zhang

    Published 2025-06-01
    “…The most important predictor<span id="page2508"/> variables included near-surface soil temperatures (top 40 cm), vegetation spectral reflectance, and soil moisture. Our results, modeled from 138 site years across 26 sites, had relatively strong predictive skill, with a mean <span class="inline-formula"><i>R</i><sup>2</sup></span> of 0.51 and 0.70 and a mean absolute error (MAE) of 30 and 27 nmol m<span class="inline-formula"><sup>−2</sup></span> s<span class="inline-formula"><sup>−1</sup></span> for daily and monthly fluxes, respectively. …”
    Get full text
    Article
  6. 58706
  7. 58707
  8. 58708
  9. 58709
  10. 58710
  11. 58711
  12. 58712
  13. 58713
  14. 58714
  15. 58715
  16. 58716
  17. 58717
  18. 58718
  19. 58719
  20. 58720