Search alternatives:
predictive » prediction (Expand Search)
Showing 121 - 140 results of 58,602 for search '(( http predictive model ) OR ( https predictive model ))', query time: 0.54s Refine Results
  1. 121
  2. 122
  3. 123
  4. 124
  5. 125
  6. 126
  7. 127
  8. 128
  9. 129
  10. 130
  11. 131
  12. 132
  13. 133

    BiDGCNLLM: A Graph–Language Model for Drone State Forecasting and Separation in Urban Air Mobility Using Digital Twin-Augmented Remote ID Data by Zhang Wen, Junjie Zhao, An Zhang, Wenhao Bi, Boyu Kuang, Yu Su, Ruixin Wang

    Published 2025-07-01
    “…Results from the AirSUMO co-simulation platform and a DT replica of the Cranfield University campus show that BiDGCNLLM outperforms state-of-the-art time series models in short-term velocity prediction. Compared to Transformer-LSTM, BiDGCNLLM marginally improves the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> by 11.59%. …”
    Get full text
    Article
  14. 134

    Mitigating Algorithmic Bias in AI-Driven Cardiovascular Imaging for Fairer Diagnostics by Md Abu Sufian, Lujain Alsadder, Wahiba Hamzi, Sadia Zaman, A. S. M. Sharifuzzaman Sagar, Boumediene Hamzi

    Published 2024-11-01
    “…<b>Background/Objectives</b>: The research addresses algorithmic bias in deep learning models for cardiovascular risk prediction, focusing on fairness across demographic and socioeconomic groups to mitigate health disparities. …”
    Get full text
    Article
  15. 135
  16. 136

    Satellite Image Price Prediction Based on Machine Learning by Linhan Yang, Zugang Chen, Guoqing Li

    Published 2025-06-01
    “…For optical imagery, the Bayesian-optimized XGBoost model achieves the best performance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mo>=</mo><mn>0.9870</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>RMSE</mi><mo>=</mo><mi>$</mi><mn>3.44</mn><mo>/</mo><msup><mi>km</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>NSE</mi><mo>=</mo><mn>0.9651</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>KGE</mi><mo>=</mo><mn>0.8950</mn></mrow></semantics></math></inline-formula>), followed closely by CatBoost (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mo>=</mo><mn>0.9826</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>RMSE</mi><mo>=</mo><mi>$</mi><mn>3.83</mn><mo>/</mo><msup><mi>km</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>). …”
    Get full text
    Article
  17. 137

    Simplifying Field Traversing Efficiency Estimation Using Machine Learning and Geometric Field Indices by Gavriela Asiminari, Lefteris Benos, Dimitrios Kateris, Patrizia Busato, Charisios Achillas, Claus Grøn Sørensen, Simon Pearson, Dionysis Bochtis

    Published 2025-03-01
    “…The gradient-boosting regression-based model was the most effective, achieving a high mean <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula> value of 0.931 in predicting field efficiency, by taking into account only basic geometric field indices. …”
    Get full text
    Article
  18. 138

    Machine Learning for the Prediction of Thermodynamic Properties in Amorphous Silicon by Nicolás Amigo

    Published 2025-05-01
    “…The MD simulations provided a detailed dataset that captured the atomic-level behavior of the a-Si, which enabled exploration of how thermodynamic factors, such as the cooling rate, temperature, and pressure, affect the material’s density, internal energy, and enthalpy. Machine learning models were trained on this dataset and demonstrated exceptional predictive accuracy with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> values that exceeded 0.95 and minimal root-mean-square errors. …”
    Get full text
    Article
  19. 139
  20. 140