Published 2023-11-01
“…In this article, we prove that every vertical operator on the Bergman space $\mathcal{A}^2(\Pi )$ over the upper half-plane can be uniquely represented as an integral operator of the form
\begin{equation*}
\left(S_\varphi f\right)(z) = \int _{\Pi } f(w) \varphi (z-\overline{w}) d\mu (w),~~\forall f\in \mathcal{A}^2(\Pi ),~z\in \Pi ,
\end{equation*}
where $\varphi $ is an analytic function on $\Pi $ given by
\begin{equation*}
\varphi (z) = \int _{\mathbb{R}_+}\xi \
sigma (\xi ) e^{iz\xi } d\xi , \ \forall z\in \Pi
\end{equation*}
for some $\sigma \in L^\infty (\mathbb{R}_+)$. …”
Get full text
Article