Showing 1,421 - 1,440 results of 3,801 for search '"Machine learning"', query time: 0.15s Refine Results
  1. 1421
  2. 1422
  3. 1423
  4. 1424

    Combining a Standardized Growth Class Assessment, UAV Sensor Data, GIS Processing, and Machine Learning Classification to Derive a Correlation with the Vigour and Canopy Volume of Grapevines by Ronald P. Dillner, Maria A. Wimmer, Matthias Porten, Thomas Udelhoven, Rebecca Retzlaff

    Published 2025-01-01
    “…To address these problems, based on a standardized growth class assessment, labeled ground truth data of precisely located grapevines were predicted with specifically selected Machine Learning (ML) classifiers (Random Forest Classifier (RFC), Support Vector Machines (SVM)), utilizing multispectral UAV (Unmanned Aerial Vehicle) sensor data. …”
    Get full text
    Article
  5. 1425
  6. 1426
  7. 1427
  8. 1428

    The external validity of machine learning-based prediction scores from hematological parameters of COVID-19: A study using hospital records from Brazil, Italy, and Western Europe. by Ali Safdari, Chanda Sai Keshav, Deepanshu Mody, Kshitij Verma, Utsav Kaushal, Vaadeendra Kumar Burra, Sibnath Ray, Debashree Bandyopadhyay

    Published 2025-01-01
    “…The unprecedented worldwide pandemic caused by COVID-19 has motivated several research groups to develop machine-learning based approaches that aim to automate the diagnosis or screening of COVID-19, in large-scale. …”
    Get full text
    Article
  9. 1429
  10. 1430

    A Simple Machine Learning-Based Quantitative Structure–Activity Relationship Model for Predicting pIC<sub>50</sub> Inhibition Values of FLT3 Tyrosine Kinase by Jackson J. Alcázar, Ignacio Sánchez, Cristian Merino, Bruno Monasterio, Gaspar Sajuria, Diego Miranda, Felipe Díaz, Paola R. Campodónico

    Published 2025-01-01
    “…This study aimed to develop a robust and user-friendly machine learning-based quantitative structure–activity relationship (QSAR) model to predict the inhibitory potency (pIC<sub>50</sub> values) of FLT3 inhibitors, addressing the limitations of previous models in dataset size, diversity, and predictive accuracy. …”
    Get full text
    Article
  11. 1431
  12. 1432

    Implementasi Sensor Polar H10 dan Raspberry Pi dalam Pemantauan dan Klasifikasi Detak Jantung Beberapa Individu Secara Simultan dengan Pendekatan Machine Learning  by eko sakti pramukantoro, Kasyful Amron, Viera Wardhani, Putri Annisa Kamila

    Published 2024-02-01
    “…Data tersebut kemudian diprediksi menggunakan model machine learning berbasis random forest yang berjalan pada Raspberry Pi untuk prediksi 5 jenis detak jantung. …”
    Get full text
    Article
  13. 1433
  14. 1434
  15. 1435
  16. 1436
  17. 1437
  18. 1438
  19. 1439
  20. 1440