African animal trypanocide resistance: A systematic review and meta-analysis

African animals resistance ( AATr) continues to undermine global efforts to eliminate the transmission of africa intrypanosomiasis in endemic communities. the continued lack of new trypanocides has participated drug misuse and over use, thus contributing to the devlopment of the AADr phenotype....

Full description

Saved in:
Bibliographic Details
Main Authors: Keneth, Iceland Kasozi, Ewan, Thomas MacLeod, Susan, Christina Welburn
Format: Article
Language:English
Published: 2024
Online Access:http://hdl.handle.net/20.500.12493/1960
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1813635239564541952
author Keneth, Iceland Kasozi
Ewan, Thomas MacLeod
Susan, Christina Welburn
author_facet Keneth, Iceland Kasozi
Ewan, Thomas MacLeod
Susan, Christina Welburn
author_sort Keneth, Iceland Kasozi
collection KAB-DR
description African animals resistance ( AATr) continues to undermine global efforts to eliminate the transmission of africa intrypanosomiasis in endemic communities. the continued lack of new trypanocides has participated drug misuse and over use, thus contributing to the devlopment of the AADr phenotype. in this study, we investigated the threate associated with AAtr by using the major globally available chemotherapeutic agents. Methods: A total of seven electronic databases were screened for an article on trypanocide resistance in AATr by using keywords on preclinical and clinical trials with the number of animals with treatment relapse, days taken to relapse, and resistant gene markers using the PRISMA checklist. Data were cleaned using the SR deduplicator and covidence and analyzed using Cochrane RevMan®. Dichotomous outputs were presented using risk ratio (RR), while continuous data were presented using the standardized mean difference (SMD) at a 95% confidence interval. Results: A total of eight publications in which diminazene aceturate (DA), isometamidium chloride (ISM), and homidium chloride/bromide (HB) were identified as the major trypanocides were used. In all preclinical studies, the development of resistance was in the order of HB > ISM > DA. DA vs. ISM (SMD = 0.15, 95% CI: −0.54, 0.83; I 2 = 46%, P = 0.05), DA vs. HB (SMD = 0.96, 95% CI: 0.47, 1.45; I 2 = 0%, P = 0.86), and HB vs. ISM (SMD = −0.41, 95% CI: −0.96, 0.14; I2 = 5%, P = 0.38) showed multiple cross-resistance. Clinical studies also showed evidence of multi-drug resistance on DA and ISM (RR = 1.01, 95% CI: 0.71–1.43; I2 = 46%, P = 0.16). To address resistance, most preclinical studies increased the dosage and the treatment time, and this failed to improve the patient’s prognosis. Major markers of resistance explored include TbAT1, P1/P2 transporters, folate transporters, such as F-I, F-II, F-III, and polyamine biosynthesis inhibitors. In addition, immunosuppressed hosts favor the development of AATr.
format Article
id oai:idr.kab.ac.ug:20.500.12493-1960
institution KAB-DR
language English
publishDate 2024
record_format dspace
spelling oai:idr.kab.ac.ug:20.500.12493-19602024-08-01T00:01:46Z African animal trypanocide resistance: A systematic review and meta-analysis Keneth, Iceland Kasozi Ewan, Thomas MacLeod Susan, Christina Welburn African animals resistance ( AATr) continues to undermine global efforts to eliminate the transmission of africa intrypanosomiasis in endemic communities. the continued lack of new trypanocides has participated drug misuse and over use, thus contributing to the devlopment of the AADr phenotype. in this study, we investigated the threate associated with AAtr by using the major globally available chemotherapeutic agents. Methods: A total of seven electronic databases were screened for an article on trypanocide resistance in AATr by using keywords on preclinical and clinical trials with the number of animals with treatment relapse, days taken to relapse, and resistant gene markers using the PRISMA checklist. Data were cleaned using the SR deduplicator and covidence and analyzed using Cochrane RevMan®. Dichotomous outputs were presented using risk ratio (RR), while continuous data were presented using the standardized mean difference (SMD) at a 95% confidence interval. Results: A total of eight publications in which diminazene aceturate (DA), isometamidium chloride (ISM), and homidium chloride/bromide (HB) were identified as the major trypanocides were used. In all preclinical studies, the development of resistance was in the order of HB > ISM > DA. DA vs. ISM (SMD = 0.15, 95% CI: −0.54, 0.83; I 2 = 46%, P = 0.05), DA vs. HB (SMD = 0.96, 95% CI: 0.47, 1.45; I 2 = 0%, P = 0.86), and HB vs. ISM (SMD = −0.41, 95% CI: −0.96, 0.14; I2 = 5%, P = 0.38) showed multiple cross-resistance. Clinical studies also showed evidence of multi-drug resistance on DA and ISM (RR = 1.01, 95% CI: 0.71–1.43; I2 = 46%, P = 0.16). To address resistance, most preclinical studies increased the dosage and the treatment time, and this failed to improve the patient’s prognosis. Major markers of resistance explored include TbAT1, P1/P2 transporters, folate transporters, such as F-I, F-II, F-III, and polyamine biosynthesis inhibitors. In addition, immunosuppressed hosts favor the development of AATr. Kabale University 2024-02-09T09:35:55Z 2024-02-09T09:35:55Z 2024-02 Article http://hdl.handle.net/20.500.12493/1960 en Attribution-NonCommercial-NoDerivs 3.0 United States http://creativecommons.org/licenses/by-nc-nd/3.0/us/ application/pdf
spellingShingle Keneth, Iceland Kasozi
Ewan, Thomas MacLeod
Susan, Christina Welburn
African animal trypanocide resistance: A systematic review and meta-analysis
title African animal trypanocide resistance: A systematic review and meta-analysis
title_full African animal trypanocide resistance: A systematic review and meta-analysis
title_fullStr African animal trypanocide resistance: A systematic review and meta-analysis
title_full_unstemmed African animal trypanocide resistance: A systematic review and meta-analysis
title_short African animal trypanocide resistance: A systematic review and meta-analysis
title_sort african animal trypanocide resistance a systematic review and meta analysis
url http://hdl.handle.net/20.500.12493/1960
work_keys_str_mv AT kenethicelandkasozi africananimaltrypanocideresistanceasystematicreviewandmetaanalysis
AT ewanthomasmacleod africananimaltrypanocideresistanceasystematicreviewandmetaanalysis
AT susanchristinawelburn africananimaltrypanocideresistanceasystematicreviewandmetaanalysis