Masked and Unmasked Face Recognition Model Using Deep Learning Techniques. A case of Black Race.

Currently, many institutions of higher learning in Uganda are faced with major security threats ranging from burglary to cyber threats. Consequently, the institutions have recruited and deployed several trained personnel to offer the desired security. As human beings, these personnel can make errors...

Full description

Saved in:
Bibliographic Details
Main Authors: Mabirizi, Vicent, Ampaire, Ray Brooks, Muhoza, Gloria B.
Format: Article
Published: Kabale University 2023
Online Access:http://hdl.handle.net/20.500.12493/1281
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1800403069159079936
author Mabirizi, Vicent
Ampaire, Ray Brooks
Muhoza, Gloria B.
author_facet Mabirizi, Vicent
Ampaire, Ray Brooks
Muhoza, Gloria B.
author_sort Mabirizi, Vicent
collection KAB-DR
description Currently, many institutions of higher learning in Uganda are faced with major security threats ranging from burglary to cyber threats. Consequently, the institutions have recruited and deployed several trained personnel to offer the desired security. As human beings, these personnel can make errors either by commission or omission. To overcome the limitation of trained security personnel, a number of face recognition models that detect masked and unmasked faces automatically for allowing access to sensitive premises have been developed. However, the state -of -the art of these models are not generalizable across populations and probably will not work in the Ugandan context because they have not been implemented with capabilities to eliminate racial discrimination in face recognition. This study therefore developed a deep learning model for masked and unmasked face recognition based on local context. The model was trained and tested on 1000 images taken from students of Kabale University using Nikon d850 camera. Machine learning techniques such as Principal Component Analysis, Geometric Feature Based Methods and double threshold techniques were used in the development phase while results were classified using CNN pre-trained models. From results obtained, VGG19 achieved the higher accuracy of 91.2% followed by Inception V 3 at 90.3% and VGG16 with 89.69% whereas the developed model achieved 90.32%.
format Article
id oai:idr.kab.ac.ug:20.500.12493-1281
institution KAB-DR
publishDate 2023
publisher Kabale University
record_format dspace
spelling oai:idr.kab.ac.ug:20.500.12493-12812024-01-17T04:44:54Z Masked and Unmasked Face Recognition Model Using Deep Learning Techniques. A case of Black Race. Mabirizi, Vicent Ampaire, Ray Brooks Muhoza, Gloria B. Currently, many institutions of higher learning in Uganda are faced with major security threats ranging from burglary to cyber threats. Consequently, the institutions have recruited and deployed several trained personnel to offer the desired security. As human beings, these personnel can make errors either by commission or omission. To overcome the limitation of trained security personnel, a number of face recognition models that detect masked and unmasked faces automatically for allowing access to sensitive premises have been developed. However, the state -of -the art of these models are not generalizable across populations and probably will not work in the Ugandan context because they have not been implemented with capabilities to eliminate racial discrimination in face recognition. This study therefore developed a deep learning model for masked and unmasked face recognition based on local context. The model was trained and tested on 1000 images taken from students of Kabale University using Nikon d850 camera. Machine learning techniques such as Principal Component Analysis, Geometric Feature Based Methods and double threshold techniques were used in the development phase while results were classified using CNN pre-trained models. From results obtained, VGG19 achieved the higher accuracy of 91.2% followed by Inception V 3 at 90.3% and VGG16 with 89.69% whereas the developed model achieved 90.32%. 2023-07-04T13:20:34Z 2023-07-04T13:20:34Z 2023 Article Mabirizi, Vicent, Ampaire, Ray Brooks & Muhoza, Gloria B. (2023). Masked and Unmasked Face Recognition Model Using Deep Learning Techniques. A case of Black Race. Kabale: Kabale University. http://hdl.handle.net/20.500.12493/1281 application/pdf Kabale University
spellingShingle Mabirizi, Vicent
Ampaire, Ray Brooks
Muhoza, Gloria B.
Masked and Unmasked Face Recognition Model Using Deep Learning Techniques. A case of Black Race.
title Masked and Unmasked Face Recognition Model Using Deep Learning Techniques. A case of Black Race.
title_full Masked and Unmasked Face Recognition Model Using Deep Learning Techniques. A case of Black Race.
title_fullStr Masked and Unmasked Face Recognition Model Using Deep Learning Techniques. A case of Black Race.
title_full_unstemmed Masked and Unmasked Face Recognition Model Using Deep Learning Techniques. A case of Black Race.
title_short Masked and Unmasked Face Recognition Model Using Deep Learning Techniques. A case of Black Race.
title_sort masked and unmasked face recognition model using deep learning techniques a case of black race
url http://hdl.handle.net/20.500.12493/1281
work_keys_str_mv AT mabirizivicent maskedandunmaskedfacerecognitionmodelusingdeeplearningtechniquesacaseofblackrace
AT ampaireraybrooks maskedandunmaskedfacerecognitionmodelusingdeeplearningtechniquesacaseofblackrace
AT muhozagloriab maskedandunmaskedfacerecognitionmodelusingdeeplearningtechniquesacaseofblackrace