The integrated multi-omics analysis unravels distinct roles of Malvaceae-derived protein hydrolysate and its molecular fraction in modulating tomato resilience under limited nitrogen availability

Nitrogen (N) is essential for plant growth, yet its limited availability challenges crop development. Protein hydrolysates (PHs) from plant sources are biostimulants that can enhance nutrient use efficiency and stress tolerance in crops, although their mode of action, depending on the botanical orig...

Full description

Saved in:
Bibliographic Details
Main Authors: Sonia Monterisi, Monica Yorlady Alzate Zuluaga, Biancamaria Senizza, Mariateresa Cardarelli, Youssef Rouphael, Giuseppe Colla, Luigi Lucini, Stefano Cesco, Youry Pii
Format: Article
Language:English
Published: Elsevier 2025-03-01
Series:Plant Stress
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2667064X25000363
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849774425945145344
author Sonia Monterisi
Monica Yorlady Alzate Zuluaga
Biancamaria Senizza
Mariateresa Cardarelli
Youssef Rouphael
Giuseppe Colla
Luigi Lucini
Stefano Cesco
Youry Pii
author_facet Sonia Monterisi
Monica Yorlady Alzate Zuluaga
Biancamaria Senizza
Mariateresa Cardarelli
Youssef Rouphael
Giuseppe Colla
Luigi Lucini
Stefano Cesco
Youry Pii
author_sort Sonia Monterisi
collection DOAJ
description Nitrogen (N) is essential for plant growth, yet its limited availability challenges crop development. Protein hydrolysates (PHs) from plant sources are biostimulants that can enhance nutrient use efficiency and stress tolerance in crops, although their mode of action, depending on the botanical origin and the molecular fraction, is largely unknown. This study investigated the molecular effects of a Malvaceae-based pH (C) and its medium molecular weight fraction (F2) on tomato plants under optimal and suboptimal N conditions. Plants were foliarly-treated with C, F2, or left untreated, and analysed using integrated omics techniques. Under optimal N conditions, C upregulated genes associated with photosynthesis, aging, and abiotic stress responses, suggesting enhanced metabolism and resilience. Both C and F2 modulated genes involved in hormone signalling, particularly auxin and cytokinin, and Circadian rhythm pathways. Under suboptimal N, C influenced hormone signalling and light response genes, potentially alleviating N deficiency stress. Metabolomic analysis showed that under low N, C increased fatty acids, amino acids, and phenolic compounds linked to stress protection, while F2 had a milder effect. Multi-omics analysis showed that C impacted N metabolism upregulating nitrate transporters (NRT1) and promoting metabolic reprogramming, whereas F2 primarily influenced hormonal signalling and Circadian rhythm. Overall, C might be more effective than F2 in optimizing N use efficiency. Our study demonstrates that Malvaceae-based PHs can modulate gene expression and metabolism in tomato plants under suboptimal N level, enhancing adaptation to N shortage. However, further research is needed to elucidate the mode of action of PHs in N metabolism.
format Article
id doaj-art-ffe7a031bc954d2690d8897f865d4f6d
institution DOAJ
issn 2667-064X
language English
publishDate 2025-03-01
publisher Elsevier
record_format Article
series Plant Stress
spelling doaj-art-ffe7a031bc954d2690d8897f865d4f6d2025-08-20T03:01:42ZengElsevierPlant Stress2667-064X2025-03-011510077110.1016/j.stress.2025.100771The integrated multi-omics analysis unravels distinct roles of Malvaceae-derived protein hydrolysate and its molecular fraction in modulating tomato resilience under limited nitrogen availabilitySonia Monterisi0Monica Yorlady Alzate Zuluaga1Biancamaria Senizza2Mariateresa Cardarelli3Youssef Rouphael4Giuseppe Colla5Luigi Lucini6Stefano Cesco7Youry Pii8Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, Piazza Università 1, Bolzano 39100, Italy; Corresponding authors.Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, Piazza Università 1, Bolzano 39100, ItalyDepartment for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza 29122, ItalyDepartment of Agriculture and Forest Sciences, University of Tuscia, Viterbo, ItalyDepartment of Agricultural Sciences, University of Naples Federico II, Portici, ItalyDepartment of Agriculture and Forest Sciences, University of Tuscia, Viterbo, ItalyDepartment for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza 29122, ItalyFaculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, Piazza Università 1, Bolzano 39100, ItalyFaculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, Piazza Università 1, Bolzano 39100, Italy; Corresponding authors.Nitrogen (N) is essential for plant growth, yet its limited availability challenges crop development. Protein hydrolysates (PHs) from plant sources are biostimulants that can enhance nutrient use efficiency and stress tolerance in crops, although their mode of action, depending on the botanical origin and the molecular fraction, is largely unknown. This study investigated the molecular effects of a Malvaceae-based pH (C) and its medium molecular weight fraction (F2) on tomato plants under optimal and suboptimal N conditions. Plants were foliarly-treated with C, F2, or left untreated, and analysed using integrated omics techniques. Under optimal N conditions, C upregulated genes associated with photosynthesis, aging, and abiotic stress responses, suggesting enhanced metabolism and resilience. Both C and F2 modulated genes involved in hormone signalling, particularly auxin and cytokinin, and Circadian rhythm pathways. Under suboptimal N, C influenced hormone signalling and light response genes, potentially alleviating N deficiency stress. Metabolomic analysis showed that under low N, C increased fatty acids, amino acids, and phenolic compounds linked to stress protection, while F2 had a milder effect. Multi-omics analysis showed that C impacted N metabolism upregulating nitrate transporters (NRT1) and promoting metabolic reprogramming, whereas F2 primarily influenced hormonal signalling and Circadian rhythm. Overall, C might be more effective than F2 in optimizing N use efficiency. Our study demonstrates that Malvaceae-based PHs can modulate gene expression and metabolism in tomato plants under suboptimal N level, enhancing adaptation to N shortage. However, further research is needed to elucidate the mode of action of PHs in N metabolism.http://www.sciencedirect.com/science/article/pii/S2667064X25000363Solanum lycopersicum L.Protein hydrolysatesBiostimulant fractionationRNA-seqUntargeted metabolomicNitrogen deficiency
spellingShingle Sonia Monterisi
Monica Yorlady Alzate Zuluaga
Biancamaria Senizza
Mariateresa Cardarelli
Youssef Rouphael
Giuseppe Colla
Luigi Lucini
Stefano Cesco
Youry Pii
The integrated multi-omics analysis unravels distinct roles of Malvaceae-derived protein hydrolysate and its molecular fraction in modulating tomato resilience under limited nitrogen availability
Plant Stress
Solanum lycopersicum L.
Protein hydrolysates
Biostimulant fractionation
RNA-seq
Untargeted metabolomic
Nitrogen deficiency
title The integrated multi-omics analysis unravels distinct roles of Malvaceae-derived protein hydrolysate and its molecular fraction in modulating tomato resilience under limited nitrogen availability
title_full The integrated multi-omics analysis unravels distinct roles of Malvaceae-derived protein hydrolysate and its molecular fraction in modulating tomato resilience under limited nitrogen availability
title_fullStr The integrated multi-omics analysis unravels distinct roles of Malvaceae-derived protein hydrolysate and its molecular fraction in modulating tomato resilience under limited nitrogen availability
title_full_unstemmed The integrated multi-omics analysis unravels distinct roles of Malvaceae-derived protein hydrolysate and its molecular fraction in modulating tomato resilience under limited nitrogen availability
title_short The integrated multi-omics analysis unravels distinct roles of Malvaceae-derived protein hydrolysate and its molecular fraction in modulating tomato resilience under limited nitrogen availability
title_sort integrated multi omics analysis unravels distinct roles of malvaceae derived protein hydrolysate and its molecular fraction in modulating tomato resilience under limited nitrogen availability
topic Solanum lycopersicum L.
Protein hydrolysates
Biostimulant fractionation
RNA-seq
Untargeted metabolomic
Nitrogen deficiency
url http://www.sciencedirect.com/science/article/pii/S2667064X25000363
work_keys_str_mv AT soniamonterisi theintegratedmultiomicsanalysisunravelsdistinctrolesofmalvaceaederivedproteinhydrolysateanditsmolecularfractioninmodulatingtomatoresilienceunderlimitednitrogenavailability
AT monicayorladyalzatezuluaga theintegratedmultiomicsanalysisunravelsdistinctrolesofmalvaceaederivedproteinhydrolysateanditsmolecularfractioninmodulatingtomatoresilienceunderlimitednitrogenavailability
AT biancamariasenizza theintegratedmultiomicsanalysisunravelsdistinctrolesofmalvaceaederivedproteinhydrolysateanditsmolecularfractioninmodulatingtomatoresilienceunderlimitednitrogenavailability
AT mariateresacardarelli theintegratedmultiomicsanalysisunravelsdistinctrolesofmalvaceaederivedproteinhydrolysateanditsmolecularfractioninmodulatingtomatoresilienceunderlimitednitrogenavailability
AT youssefrouphael theintegratedmultiomicsanalysisunravelsdistinctrolesofmalvaceaederivedproteinhydrolysateanditsmolecularfractioninmodulatingtomatoresilienceunderlimitednitrogenavailability
AT giuseppecolla theintegratedmultiomicsanalysisunravelsdistinctrolesofmalvaceaederivedproteinhydrolysateanditsmolecularfractioninmodulatingtomatoresilienceunderlimitednitrogenavailability
AT luigilucini theintegratedmultiomicsanalysisunravelsdistinctrolesofmalvaceaederivedproteinhydrolysateanditsmolecularfractioninmodulatingtomatoresilienceunderlimitednitrogenavailability
AT stefanocesco theintegratedmultiomicsanalysisunravelsdistinctrolesofmalvaceaederivedproteinhydrolysateanditsmolecularfractioninmodulatingtomatoresilienceunderlimitednitrogenavailability
AT yourypii theintegratedmultiomicsanalysisunravelsdistinctrolesofmalvaceaederivedproteinhydrolysateanditsmolecularfractioninmodulatingtomatoresilienceunderlimitednitrogenavailability
AT soniamonterisi integratedmultiomicsanalysisunravelsdistinctrolesofmalvaceaederivedproteinhydrolysateanditsmolecularfractioninmodulatingtomatoresilienceunderlimitednitrogenavailability
AT monicayorladyalzatezuluaga integratedmultiomicsanalysisunravelsdistinctrolesofmalvaceaederivedproteinhydrolysateanditsmolecularfractioninmodulatingtomatoresilienceunderlimitednitrogenavailability
AT biancamariasenizza integratedmultiomicsanalysisunravelsdistinctrolesofmalvaceaederivedproteinhydrolysateanditsmolecularfractioninmodulatingtomatoresilienceunderlimitednitrogenavailability
AT mariateresacardarelli integratedmultiomicsanalysisunravelsdistinctrolesofmalvaceaederivedproteinhydrolysateanditsmolecularfractioninmodulatingtomatoresilienceunderlimitednitrogenavailability
AT youssefrouphael integratedmultiomicsanalysisunravelsdistinctrolesofmalvaceaederivedproteinhydrolysateanditsmolecularfractioninmodulatingtomatoresilienceunderlimitednitrogenavailability
AT giuseppecolla integratedmultiomicsanalysisunravelsdistinctrolesofmalvaceaederivedproteinhydrolysateanditsmolecularfractioninmodulatingtomatoresilienceunderlimitednitrogenavailability
AT luigilucini integratedmultiomicsanalysisunravelsdistinctrolesofmalvaceaederivedproteinhydrolysateanditsmolecularfractioninmodulatingtomatoresilienceunderlimitednitrogenavailability
AT stefanocesco integratedmultiomicsanalysisunravelsdistinctrolesofmalvaceaederivedproteinhydrolysateanditsmolecularfractioninmodulatingtomatoresilienceunderlimitednitrogenavailability
AT yourypii integratedmultiomicsanalysisunravelsdistinctrolesofmalvaceaederivedproteinhydrolysateanditsmolecularfractioninmodulatingtomatoresilienceunderlimitednitrogenavailability