Design and Validation of an Edge-AI Fire Safety System with SmartThings Integration for Accelerated Detection and Targeted Suppression
This study presents the design and validation of an integrated fire safety system that leverages edge AI, hybrid sensing, and precision suppression to overcome the latency and collateral limitations of conventional smoke detection and sprinkler systems. The proposed platform features a dual-mode sen...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/14/8118 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study presents the design and validation of an integrated fire safety system that leverages edge AI, hybrid sensing, and precision suppression to overcome the latency and collateral limitations of conventional smoke detection and sprinkler systems. The proposed platform features a dual-mode sensor array for early fire recognition, motorized ventilation units for rapid smoke extraction, and a 360° directional nozzle for targeted agent discharge using a residue-free clean extinguishing agent. Experimental trials demonstrated an average fire detection time of 5.8 s and complete flame suppression within 13.2 s, with 90% smoke clearance achieved in under 95 s. No false positives were recorded during non-fire simulations, and the system remained fully functional under simulated cloud communication failure, confirming its edge-resilient architecture. A probabilistic risk analysis based on ISO 31000 and NFPA 551 frameworks showed risk reductions of 75.6% in life safety, 58.0% in property damage, and 67.1% in business disruption. The system achieved a composite risk reduction of approximately 73%, shifting the operational risk level into the ALARP region. These findings demonstrate the system’s capacity to provide proactive, energy-efficient, and spatially targeted fire response suitable for high-value infrastructure. The modular design and SmartThings Edge integration further support scalable deployment and real-time system intelligence, establishing a strong foundation for future adaptive fire protection frameworks. |
|---|---|
| ISSN: | 2076-3417 |