Using Large Language Models to Retrieve Critical Data from Clinical Processes and Business Rules

Current clinical care relies heavily on complex, rule-based systems for tasks like diagnosis and treatment. However, these systems can be cumbersome and require constant updates. This study explores the potential of the large language model (LLM), LLaMA 2, to address these limitations. We tested LLa...

Full description

Saved in:
Bibliographic Details
Main Authors: Yunguo Yu, Cesar A. Gomez-Cabello, Svetlana Makarova, Yogesh Parte, Sahar Borna, Syed Ali Haider, Ariana Genovese, Srinivasagam Prabha, Antonio J. Forte
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Bioengineering
Subjects:
Online Access:https://www.mdpi.com/2306-5354/12/1/17
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Current clinical care relies heavily on complex, rule-based systems for tasks like diagnosis and treatment. However, these systems can be cumbersome and require constant updates. This study explores the potential of the large language model (LLM), LLaMA 2, to address these limitations. We tested LLaMA 2′s performance in interpreting complex clinical process models, such as Mayo Clinic Care Pathway Models (CPMs), and providing accurate clinical recommendations. LLM was trained on encoded pathways versions using DOT language, embedding them with SentenceTransformer, and then presented with hypothetical patient cases. We compared the token-level accuracy between LLM output and the ground truth by measuring both node and edge accuracy. LLaMA 2 accurately retrieved the diagnosis, suggested further evaluation, and delivered appropriate management steps, all based on the pathways. The average node accuracy across the different pathways was 0.91 (SD ± 0.045), while the average edge accuracy was 0.92 (SD ± 0.122). This study highlights the potential of LLMs for healthcare information retrieval, especially when relevant data are provided. Future research should focus on improving these models’ interpretability and their integration into existing clinical workflows.
ISSN:2306-5354