Three-Dimensional Modeling and Structured Vibration Modes of Two-Stage Helical Planetary Gears Used in Cranes

The dynamic investigation of helical planetary gears plays an important role in structure design as the vibration and noise are perceived negatively to the transmission quality. With consideration of the axial deformations of members, the gyroscopic effects, the time-variant meshing stiffness, and t...

Full description

Saved in:
Bibliographic Details
Main Authors: Lina Zhang, Yong Wang, Kai Wu, Ruoyu Sheng
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2017/9864959
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The dynamic investigation of helical planetary gears plays an important role in structure design as the vibration and noise are perceived negatively to the transmission quality. With consideration of the axial deformations of members, the gyroscopic effects, the time-variant meshing stiffness, and the coupling amongst stages, a three-dimensional dynamic model of the two-stage helical planetary gears is established by using of the lumped-parameter method in this paper. The model is applicable to variant number of planets in two stages, different planet phasing, and spacing configurations. Numerical simulation is conducted to detect the structured vibration modes of the equally spaced systems. Furthermore, the unique properties of these vibration modes are mathematically proved. Results show that the vibration modes of the two-stage helical planetary gears can be categorized as five classes: the rigid body mode, the axial translational-rotational mode, the radical translational mode, and the 1st-stage and the 2nd-stage planet mode.
ISSN:1070-9622
1875-9203