Enhanced CyGNSS Soil Moisture Retrieval Validated by In-Situ Data in Argentina's Pampas

Soil moisture (SM) retrieval using signals of opportunity based on specularly reflected signals has gained significant attention in the past two decades. Specifically, with the Cyclone Global Navigation Satellite System (CyGNSS), the reflected signal is often modeled in its simplest form, utilizing...

Full description

Saved in:
Bibliographic Details
Main Authors: Javier Arellana, Francisco Grings, Mariano Franco
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10829697/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832586903998693376
author Javier Arellana
Francisco Grings
Mariano Franco
author_facet Javier Arellana
Francisco Grings
Mariano Franco
author_sort Javier Arellana
collection DOAJ
description Soil moisture (SM) retrieval using signals of opportunity based on specularly reflected signals has gained significant attention in the past two decades. Specifically, with the Cyclone Global Navigation Satellite System (CyGNSS), the reflected signal is often modeled in its simplest form, utilizing the Fresnel reflection coefficients for a semi-infinite dielectric medium corrected with an effective roughness parameter. Within this framework, for bare soils condition, only two parameters need to be inferred: the dielectric permittivity <inline-formula><tex-math notation="LaTeX">$\varepsilon$</tex-math></inline-formula> (related to SM) and the effective roughness <inline-formula><tex-math notation="LaTeX">$\sigma$</tex-math></inline-formula>. Although this approach is relatively simple, our results show that both the estimated dielectric constant and the modeled reflectivity consistently overestimate CyGNSS observations. To address these overestimations, we propose a model where the reflected signal is scattered by a medium comprising two layers: one with a finite thickness <inline-formula><tex-math notation="LaTeX">$d$</tex-math></inline-formula> and permittivity <inline-formula><tex-math notation="LaTeX">$\varepsilon _{1}$</tex-math></inline-formula> and the other semi-infinite with permittivity <inline-formula><tex-math notation="LaTeX">$\varepsilon _{2}$</tex-math></inline-formula>. We observe that both the in-situ measurements of <inline-formula><tex-math notation="LaTeX">$\varepsilon _{1}$</tex-math></inline-formula> and the reflectivity reported by CyGNSS align with the optimal values obtained from the fit, resulting in a 73&#x0025; reduction in root mean square error when compared to the traditional approach. To further enhance SM retrieval, we propose incorporating full polarimetric images from SAOCOM. This will allow us to combine the low revisit time of CyGNSS with the high spatial resolution offered by SAOCOM.
format Article
id doaj-art-ff9b0adca8104eab96a574508d72d4e1
institution Kabale University
issn 1939-1404
2151-1535
language English
publishDate 2025-01-01
publisher IEEE
record_format Article
series IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
spelling doaj-art-ff9b0adca8104eab96a574508d72d4e12025-01-25T00:00:07ZengIEEEIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing1939-14042151-15352025-01-01183728373410.1109/JSTARS.2025.352644510829697Enhanced CyGNSS Soil Moisture Retrieval Validated by In-Situ Data in Argentina&#x0027;s PampasJavier Arellana0https://orcid.org/0009-0006-9697-7466Francisco Grings1https://orcid.org/0000-0001-5252-2466Mariano Franco2https://orcid.org/0000-0001-7611-1688Instituto de Astronom&#x00ED;a y F&#x00ED;sica del Espacio (IAFE, CONICET-UBA), Pabell&#x00F3;n IAFE, CABA, Buenos Aires, ArgentinaInstituto de Astronom&#x00ED;a y F&#x00ED;sica del Espacio (IAFE, CONICET-UBA), Pabell&#x00F3;n IAFE, CABA, Buenos Aires, ArgentinaInstituto de Astronom&#x00ED;a y F&#x00ED;sica del Espacio (IAFE, CONICET-UBA), Pabell&#x00F3;n IAFE, CABA, Buenos Aires, ArgentinaSoil moisture (SM) retrieval using signals of opportunity based on specularly reflected signals has gained significant attention in the past two decades. Specifically, with the Cyclone Global Navigation Satellite System (CyGNSS), the reflected signal is often modeled in its simplest form, utilizing the Fresnel reflection coefficients for a semi-infinite dielectric medium corrected with an effective roughness parameter. Within this framework, for bare soils condition, only two parameters need to be inferred: the dielectric permittivity <inline-formula><tex-math notation="LaTeX">$\varepsilon$</tex-math></inline-formula> (related to SM) and the effective roughness <inline-formula><tex-math notation="LaTeX">$\sigma$</tex-math></inline-formula>. Although this approach is relatively simple, our results show that both the estimated dielectric constant and the modeled reflectivity consistently overestimate CyGNSS observations. To address these overestimations, we propose a model where the reflected signal is scattered by a medium comprising two layers: one with a finite thickness <inline-formula><tex-math notation="LaTeX">$d$</tex-math></inline-formula> and permittivity <inline-formula><tex-math notation="LaTeX">$\varepsilon _{1}$</tex-math></inline-formula> and the other semi-infinite with permittivity <inline-formula><tex-math notation="LaTeX">$\varepsilon _{2}$</tex-math></inline-formula>. We observe that both the in-situ measurements of <inline-formula><tex-math notation="LaTeX">$\varepsilon _{1}$</tex-math></inline-formula> and the reflectivity reported by CyGNSS align with the optimal values obtained from the fit, resulting in a 73&#x0025; reduction in root mean square error when compared to the traditional approach. To further enhance SM retrieval, we propose incorporating full polarimetric images from SAOCOM. This will allow us to combine the low revisit time of CyGNSS with the high spatial resolution offered by SAOCOM.https://ieeexplore.ieee.org/document/10829697/Dielectric constantreflectivitysoil moisturescatteringsynthetic aperture radar
spellingShingle Javier Arellana
Francisco Grings
Mariano Franco
Enhanced CyGNSS Soil Moisture Retrieval Validated by In-Situ Data in Argentina&#x0027;s Pampas
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Dielectric constant
reflectivity
soil moisture
scattering
synthetic aperture radar
title Enhanced CyGNSS Soil Moisture Retrieval Validated by In-Situ Data in Argentina&#x0027;s Pampas
title_full Enhanced CyGNSS Soil Moisture Retrieval Validated by In-Situ Data in Argentina&#x0027;s Pampas
title_fullStr Enhanced CyGNSS Soil Moisture Retrieval Validated by In-Situ Data in Argentina&#x0027;s Pampas
title_full_unstemmed Enhanced CyGNSS Soil Moisture Retrieval Validated by In-Situ Data in Argentina&#x0027;s Pampas
title_short Enhanced CyGNSS Soil Moisture Retrieval Validated by In-Situ Data in Argentina&#x0027;s Pampas
title_sort enhanced cygnss soil moisture retrieval validated by in situ data in argentina x0027 s pampas
topic Dielectric constant
reflectivity
soil moisture
scattering
synthetic aperture radar
url https://ieeexplore.ieee.org/document/10829697/
work_keys_str_mv AT javierarellana enhancedcygnsssoilmoistureretrievalvalidatedbyinsitudatainargentinax0027spampas
AT franciscogrings enhancedcygnsssoilmoistureretrievalvalidatedbyinsitudatainargentinax0027spampas
AT marianofranco enhancedcygnsssoilmoistureretrievalvalidatedbyinsitudatainargentinax0027spampas