The spatiotemporal dynamics of COVID-19 in Europe: time-series clustering maps 5 distinct trajectories to spatial patterns

Abstract The COVID-19 pandemic affected Europe unevenly, with surges in infections and deaths fluctuating across different regions and time periods. Hyper-localised hotspots and staggered timelines created intense, asynchronous waves of infections and deaths that distort country-level and cumulative...

Full description

Saved in:
Bibliographic Details
Main Authors: Sarah Habershon, Kolja Nenoff, Guido Kraemer, Lennart Schüler, Heinrich Zozmann, Justin M. Calabrese, Sabine Attinger, Miguel D. Mahecha
Format: Article
Language:English
Published: BMC 2025-08-01
Series:Population Health Metrics
Online Access:https://doi.org/10.1186/s12963-025-00405-w
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849234816672727040
author Sarah Habershon
Kolja Nenoff
Guido Kraemer
Lennart Schüler
Heinrich Zozmann
Justin M. Calabrese
Sabine Attinger
Miguel D. Mahecha
author_facet Sarah Habershon
Kolja Nenoff
Guido Kraemer
Lennart Schüler
Heinrich Zozmann
Justin M. Calabrese
Sabine Attinger
Miguel D. Mahecha
author_sort Sarah Habershon
collection DOAJ
description Abstract The COVID-19 pandemic affected Europe unevenly, with surges in infections and deaths fluctuating across different regions and time periods. Hyper-localised hotspots and staggered timelines created intense, asynchronous waves of infections and deaths that distort country-level and cumulative data, obscuring the pandemic’s spatiotemporal dynamics through aggregation. Despite extensive research comparing states and analysing subnational variance within individual countries, the detailed subnational and transnational dynamics of the COVID-19 pandemic across Europe as a whole have not been comprehensively described. Here we show that time-series clustering, applied to weekly excess mortality estimates for subnational NUTS3 administrative regions of 27 countries in Europe, identifies five distinct pandemic trajectories which map to spatial patterns. The trajectories comprise two subgroups, representing contrasting pandemic dynamics in eastern and western Europe. Western Europe exhibits concentric arrangements of mortality impact, with secondary and tertiary impact zones surrounding outbreak epicenters. Eastern Europe exhibits internally homogeneous spatial dynamics, possibly due to the deferral of the first major mortality wave.
format Article
id doaj-art-ff976de5be6d4a37a46b81615d722fd5
institution Kabale University
issn 1478-7954
language English
publishDate 2025-08-01
publisher BMC
record_format Article
series Population Health Metrics
spelling doaj-art-ff976de5be6d4a37a46b81615d722fd52025-08-20T04:03:01ZengBMCPopulation Health Metrics1478-79542025-08-0123111310.1186/s12963-025-00405-wThe spatiotemporal dynamics of COVID-19 in Europe: time-series clustering maps 5 distinct trajectories to spatial patternsSarah Habershon0Kolja Nenoff1Guido Kraemer2Lennart Schüler3Heinrich Zozmann4Justin M. Calabrese5Sabine Attinger6Miguel D. Mahecha7Institute for Earth System Sciences and Remote SensingInstitute for Earth System Sciences and Remote SensingInstitute for Earth System Sciences and Remote SensingHelmholtz Centre for Environmental ResearchHelmholtz Centre for Environmental ResearchCASUS - Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR)Helmholtz Centre for Environmental ResearchInstitute for Earth System Sciences and Remote SensingAbstract The COVID-19 pandemic affected Europe unevenly, with surges in infections and deaths fluctuating across different regions and time periods. Hyper-localised hotspots and staggered timelines created intense, asynchronous waves of infections and deaths that distort country-level and cumulative data, obscuring the pandemic’s spatiotemporal dynamics through aggregation. Despite extensive research comparing states and analysing subnational variance within individual countries, the detailed subnational and transnational dynamics of the COVID-19 pandemic across Europe as a whole have not been comprehensively described. Here we show that time-series clustering, applied to weekly excess mortality estimates for subnational NUTS3 administrative regions of 27 countries in Europe, identifies five distinct pandemic trajectories which map to spatial patterns. The trajectories comprise two subgroups, representing contrasting pandemic dynamics in eastern and western Europe. Western Europe exhibits concentric arrangements of mortality impact, with secondary and tertiary impact zones surrounding outbreak epicenters. Eastern Europe exhibits internally homogeneous spatial dynamics, possibly due to the deferral of the first major mortality wave.https://doi.org/10.1186/s12963-025-00405-w
spellingShingle Sarah Habershon
Kolja Nenoff
Guido Kraemer
Lennart Schüler
Heinrich Zozmann
Justin M. Calabrese
Sabine Attinger
Miguel D. Mahecha
The spatiotemporal dynamics of COVID-19 in Europe: time-series clustering maps 5 distinct trajectories to spatial patterns
Population Health Metrics
title The spatiotemporal dynamics of COVID-19 in Europe: time-series clustering maps 5 distinct trajectories to spatial patterns
title_full The spatiotemporal dynamics of COVID-19 in Europe: time-series clustering maps 5 distinct trajectories to spatial patterns
title_fullStr The spatiotemporal dynamics of COVID-19 in Europe: time-series clustering maps 5 distinct trajectories to spatial patterns
title_full_unstemmed The spatiotemporal dynamics of COVID-19 in Europe: time-series clustering maps 5 distinct trajectories to spatial patterns
title_short The spatiotemporal dynamics of COVID-19 in Europe: time-series clustering maps 5 distinct trajectories to spatial patterns
title_sort spatiotemporal dynamics of covid 19 in europe time series clustering maps 5 distinct trajectories to spatial patterns
url https://doi.org/10.1186/s12963-025-00405-w
work_keys_str_mv AT sarahhabershon thespatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns
AT koljanenoff thespatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns
AT guidokraemer thespatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns
AT lennartschuler thespatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns
AT heinrichzozmann thespatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns
AT justinmcalabrese thespatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns
AT sabineattinger thespatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns
AT migueldmahecha thespatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns
AT sarahhabershon spatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns
AT koljanenoff spatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns
AT guidokraemer spatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns
AT lennartschuler spatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns
AT heinrichzozmann spatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns
AT justinmcalabrese spatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns
AT sabineattinger spatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns
AT migueldmahecha spatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns