The spatiotemporal dynamics of COVID-19 in Europe: time-series clustering maps 5 distinct trajectories to spatial patterns
Abstract The COVID-19 pandemic affected Europe unevenly, with surges in infections and deaths fluctuating across different regions and time periods. Hyper-localised hotspots and staggered timelines created intense, asynchronous waves of infections and deaths that distort country-level and cumulative...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
BMC
2025-08-01
|
| Series: | Population Health Metrics |
| Online Access: | https://doi.org/10.1186/s12963-025-00405-w |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849234816672727040 |
|---|---|
| author | Sarah Habershon Kolja Nenoff Guido Kraemer Lennart Schüler Heinrich Zozmann Justin M. Calabrese Sabine Attinger Miguel D. Mahecha |
| author_facet | Sarah Habershon Kolja Nenoff Guido Kraemer Lennart Schüler Heinrich Zozmann Justin M. Calabrese Sabine Attinger Miguel D. Mahecha |
| author_sort | Sarah Habershon |
| collection | DOAJ |
| description | Abstract The COVID-19 pandemic affected Europe unevenly, with surges in infections and deaths fluctuating across different regions and time periods. Hyper-localised hotspots and staggered timelines created intense, asynchronous waves of infections and deaths that distort country-level and cumulative data, obscuring the pandemic’s spatiotemporal dynamics through aggregation. Despite extensive research comparing states and analysing subnational variance within individual countries, the detailed subnational and transnational dynamics of the COVID-19 pandemic across Europe as a whole have not been comprehensively described. Here we show that time-series clustering, applied to weekly excess mortality estimates for subnational NUTS3 administrative regions of 27 countries in Europe, identifies five distinct pandemic trajectories which map to spatial patterns. The trajectories comprise two subgroups, representing contrasting pandemic dynamics in eastern and western Europe. Western Europe exhibits concentric arrangements of mortality impact, with secondary and tertiary impact zones surrounding outbreak epicenters. Eastern Europe exhibits internally homogeneous spatial dynamics, possibly due to the deferral of the first major mortality wave. |
| format | Article |
| id | doaj-art-ff976de5be6d4a37a46b81615d722fd5 |
| institution | Kabale University |
| issn | 1478-7954 |
| language | English |
| publishDate | 2025-08-01 |
| publisher | BMC |
| record_format | Article |
| series | Population Health Metrics |
| spelling | doaj-art-ff976de5be6d4a37a46b81615d722fd52025-08-20T04:03:01ZengBMCPopulation Health Metrics1478-79542025-08-0123111310.1186/s12963-025-00405-wThe spatiotemporal dynamics of COVID-19 in Europe: time-series clustering maps 5 distinct trajectories to spatial patternsSarah Habershon0Kolja Nenoff1Guido Kraemer2Lennart Schüler3Heinrich Zozmann4Justin M. Calabrese5Sabine Attinger6Miguel D. Mahecha7Institute for Earth System Sciences and Remote SensingInstitute for Earth System Sciences and Remote SensingInstitute for Earth System Sciences and Remote SensingHelmholtz Centre for Environmental ResearchHelmholtz Centre for Environmental ResearchCASUS - Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR)Helmholtz Centre for Environmental ResearchInstitute for Earth System Sciences and Remote SensingAbstract The COVID-19 pandemic affected Europe unevenly, with surges in infections and deaths fluctuating across different regions and time periods. Hyper-localised hotspots and staggered timelines created intense, asynchronous waves of infections and deaths that distort country-level and cumulative data, obscuring the pandemic’s spatiotemporal dynamics through aggregation. Despite extensive research comparing states and analysing subnational variance within individual countries, the detailed subnational and transnational dynamics of the COVID-19 pandemic across Europe as a whole have not been comprehensively described. Here we show that time-series clustering, applied to weekly excess mortality estimates for subnational NUTS3 administrative regions of 27 countries in Europe, identifies five distinct pandemic trajectories which map to spatial patterns. The trajectories comprise two subgroups, representing contrasting pandemic dynamics in eastern and western Europe. Western Europe exhibits concentric arrangements of mortality impact, with secondary and tertiary impact zones surrounding outbreak epicenters. Eastern Europe exhibits internally homogeneous spatial dynamics, possibly due to the deferral of the first major mortality wave.https://doi.org/10.1186/s12963-025-00405-w |
| spellingShingle | Sarah Habershon Kolja Nenoff Guido Kraemer Lennart Schüler Heinrich Zozmann Justin M. Calabrese Sabine Attinger Miguel D. Mahecha The spatiotemporal dynamics of COVID-19 in Europe: time-series clustering maps 5 distinct trajectories to spatial patterns Population Health Metrics |
| title | The spatiotemporal dynamics of COVID-19 in Europe: time-series clustering maps 5 distinct trajectories to spatial patterns |
| title_full | The spatiotemporal dynamics of COVID-19 in Europe: time-series clustering maps 5 distinct trajectories to spatial patterns |
| title_fullStr | The spatiotemporal dynamics of COVID-19 in Europe: time-series clustering maps 5 distinct trajectories to spatial patterns |
| title_full_unstemmed | The spatiotemporal dynamics of COVID-19 in Europe: time-series clustering maps 5 distinct trajectories to spatial patterns |
| title_short | The spatiotemporal dynamics of COVID-19 in Europe: time-series clustering maps 5 distinct trajectories to spatial patterns |
| title_sort | spatiotemporal dynamics of covid 19 in europe time series clustering maps 5 distinct trajectories to spatial patterns |
| url | https://doi.org/10.1186/s12963-025-00405-w |
| work_keys_str_mv | AT sarahhabershon thespatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns AT koljanenoff thespatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns AT guidokraemer thespatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns AT lennartschuler thespatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns AT heinrichzozmann thespatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns AT justinmcalabrese thespatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns AT sabineattinger thespatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns AT migueldmahecha thespatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns AT sarahhabershon spatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns AT koljanenoff spatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns AT guidokraemer spatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns AT lennartschuler spatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns AT heinrichzozmann spatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns AT justinmcalabrese spatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns AT sabineattinger spatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns AT migueldmahecha spatiotemporaldynamicsofcovid19ineuropetimeseriesclusteringmaps5distincttrajectoriestospatialpatterns |