Existence of two infinite families of solutions to a singular superlinear equation on exterior domains

We are concerned with the radial solutions of the Dirichlet problem $-\Delta u=K(|x|)f(u)$ on the exterior of the ball of radius $R>0$ centered at the origin in $\mathbb{R}^N \text{ with } N\geq 3$ where $f$ is superlinear at $\infty$ and has a singularity at $0$ with $f(u) \sim \frac{1}{|u|^{q-1...

Full description

Saved in:
Bibliographic Details
Main Authors: Narayan Aryal, Joseph Iaia
Format: Article
Language:English
Published: University of Szeged 2024-11-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11122
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850090798429765632
author Narayan Aryal
Joseph Iaia
author_facet Narayan Aryal
Joseph Iaia
author_sort Narayan Aryal
collection DOAJ
description We are concerned with the radial solutions of the Dirichlet problem $-\Delta u=K(|x|)f(u)$ on the exterior of the ball of radius $R>0$ centered at the origin in $\mathbb{R}^N \text{ with } N\geq 3$ where $f$ is superlinear at $\infty$ and has a singularity at $0$ with $f(u) \sim \frac{1}{|u|^{q-1}u} \text{ and } 0<q<1$ for small $u$. We prove that if $K(|x|)\sim |x|^{-\alpha}$ with $\alpha>2(N-1)$ then there exist two infinite families of sign-changing radial solutions.
format Article
id doaj-art-ff930af605514adaad83049be9829c01
institution DOAJ
issn 1417-3875
language English
publishDate 2024-11-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj-art-ff930af605514adaad83049be9829c012025-08-20T02:42:30ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752024-11-0120246811410.14232/ejqtde.2024.1.6811122Existence of two infinite families of solutions to a singular superlinear equation on exterior domainsNarayan Aryal0Joseph IaiaUniversity Of North Texas TX, U.S.A.We are concerned with the radial solutions of the Dirichlet problem $-\Delta u=K(|x|)f(u)$ on the exterior of the ball of radius $R>0$ centered at the origin in $\mathbb{R}^N \text{ with } N\geq 3$ where $f$ is superlinear at $\infty$ and has a singularity at $0$ with $f(u) \sim \frac{1}{|u|^{q-1}u} \text{ and } 0<q<1$ for small $u$. We prove that if $K(|x|)\sim |x|^{-\alpha}$ with $\alpha>2(N-1)$ then there exist two infinite families of sign-changing radial solutions.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11122exterior domainssingularsuperlinearradial solution
spellingShingle Narayan Aryal
Joseph Iaia
Existence of two infinite families of solutions to a singular superlinear equation on exterior domains
Electronic Journal of Qualitative Theory of Differential Equations
exterior domains
singular
superlinear
radial solution
title Existence of two infinite families of solutions to a singular superlinear equation on exterior domains
title_full Existence of two infinite families of solutions to a singular superlinear equation on exterior domains
title_fullStr Existence of two infinite families of solutions to a singular superlinear equation on exterior domains
title_full_unstemmed Existence of two infinite families of solutions to a singular superlinear equation on exterior domains
title_short Existence of two infinite families of solutions to a singular superlinear equation on exterior domains
title_sort existence of two infinite families of solutions to a singular superlinear equation on exterior domains
topic exterior domains
singular
superlinear
radial solution
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11122
work_keys_str_mv AT narayanaryal existenceoftwoinfinitefamiliesofsolutionstoasingularsuperlinearequationonexteriordomains
AT josephiaia existenceoftwoinfinitefamiliesofsolutionstoasingularsuperlinearequationonexteriordomains