Phase-dependent transparency in a two-level system with applications to all-optical switching
The phenomenon of transparency, conventionally studied in three and higher level atomic systems, is extended to the case of a two-level system (TLS), where we use a semiclassical framework to describe the transparent propagation of classical fields in a medium of TLS scatterers. We demonstrate a new...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2025-08-01
|
| Series: | Frontiers in Quantum Science and Technology |
| Subjects: | |
| Online Access: | https://www.frontiersin.org/articles/10.3389/frqst.2025.1526469/full |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The phenomenon of transparency, conventionally studied in three and higher level atomic systems, is extended to the case of a two-level system (TLS), where we use a semiclassical framework to describe the transparent propagation of classical fields in a medium of TLS scatterers. We demonstrate a new form of transparency with fast pulses, accounting for the initial state of the TLS, which we call phase-dependent transparency. Using the phenomenon of photon locking, we showed that TLSs initialized in maximum coherence states exhibit transparency to resonant fields when there is phase-matching between the phase of the atomic coherence and that of the probe field. An application to the problem of all-optical switching is also discussed, where on-demand transmission is generated by controlling the relative phase between a π/2 pump pulse and the transmitted probe pulse. |
|---|---|
| ISSN: | 2813-2181 |