Influences of metabolism and lipid homeostasis on regulatory vs. conventional T cells and implications for autoimmunity
Regulatory T cells are essential for suppressing an overactive immune system, especially concerning autoimmune disease, tumor growth, and inflammatory disease. This suppressive nature of regulatory T cells is largely due to their metabolic profiles determined by metabolic reprogramming upon activati...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2025-07-01
|
| Series: | Frontiers in Immunology |
| Subjects: | |
| Online Access: | https://www.frontiersin.org/articles/10.3389/fimmu.2025.1613230/full |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Regulatory T cells are essential for suppressing an overactive immune system, especially concerning autoimmune disease, tumor growth, and inflammatory disease. This suppressive nature of regulatory T cells is largely due to their metabolic profiles determined by metabolic reprogramming upon activation and subsequent differentiation. As regulatory T cells tend to process and cycle energy differently from other T cell subsets, we are interested in what metabolic processes support regulatory T cell function. This review will consider how regulatory T cells compare with conventional T cells in terms of their participation in distinct metabolic pathways and how the presence of regulatory T cell-specific molecules influences proliferation and suppressive function. Additionally, this review will identify possible metabolic targets of regulatory T cells that could be targeted for development of autoimmune disease therapies. |
|---|---|
| ISSN: | 1664-3224 |